Conflict-Free Colorings of Rectangles Ranges

Given the range space (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P,\mathcal{R}$\end{document}), where P is a set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Elbassioni, Khaled, Mustafa, Nabil H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue
container_start_page 254
container_title
container_volume
creator Elbassioni, Khaled
Mustafa, Nabil H.
description Given the range space (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P,\mathcal{R}$\end{document}), where P is a set of n points in ℝ2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}$\end{document} is the family of subsets of P induced by all axis-parallel rectangles, the conflict-free coloring problem asks for a coloring of P with the minimum number of colors such that (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P,\mathcal{R}$\end{document}) is conflict-free. We study the following question: Given P, is it possible to add a small set of points Q such that (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P \cup Q,\mathcal{R}$\end{document}) can be colored with fewer colors than (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P,\mathcal{R}$\end{document})? Our main result is the following: given P, and any ε ≥ 0, one can always add a set Q of O(n1 − ε) points such that P ∪ Q can be conflict-free colored using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{O}(n^{\frac{3}{8}(1+\varepsilon)})$\end{document} colors. Moreover, the set Q and the conflict-free coloring can be computed in polynomial time, with high probability. Our result is obtained by introducing a general probabilistic re-coloring technique, which we call quasi-conflict-free coloring, and which may be of independent interest. A further application of this technique is also given.
doi_str_mv 10.1007/11672142_20
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19162788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19162788</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-f0d28e03e4333482d8e2c18e531f64f41fc92f9ba93eab0a433b7c8707d88a673</originalsourceid><addsrcrecordid>eNpNkE9Lw0AUxNd_YKg9-QVy8SAYfW_fNvv2KKFVoSAUPS-b7W6JxiRke_Hbm1IPncsc5scwjBC3CI8IoJ8QSy1RSSvhTMyNZlooICmZ9bnIsEQsiJS5OMkIkC5FBgSyMFrRtZin9AWTSAKyysRD1Xexbfy-WI0h5FXf9mPT7VLex3wT_N51uzakfDN5SDfiKro2hfm_z8TnavlRvRbr95e36nldDBLNvoiwlRyAgqJpEMstB-mRw4IwlioqjN7IaGpnKLga3ITV2rMGvWV2paaZuDv2Di5518bRdb5JdhibHzf-WjRYSs08cfdHLg2H0WG0dd9_J4tgD4_Zk8foD4P3VcA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Conflict-Free Colorings of Rectangles Ranges</title><source>Springer Books</source><creator>Elbassioni, Khaled ; Mustafa, Nabil H.</creator><contributor>Durand, Bruno ; Thomas, Wolfgang</contributor><creatorcontrib>Elbassioni, Khaled ; Mustafa, Nabil H. ; Durand, Bruno ; Thomas, Wolfgang</creatorcontrib><description>Given the range space (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P,\mathcal{R}$\end{document}), where P is a set of n points in ℝ2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}$\end{document} is the family of subsets of P induced by all axis-parallel rectangles, the conflict-free coloring problem asks for a coloring of P with the minimum number of colors such that (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P,\mathcal{R}$\end{document}) is conflict-free. We study the following question: Given P, is it possible to add a small set of points Q such that (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P \cup Q,\mathcal{R}$\end{document}) can be colored with fewer colors than (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P,\mathcal{R}$\end{document})? Our main result is the following: given P, and any ε ≥ 0, one can always add a set Q of O(n1 − ε) points such that P ∪ Q can be conflict-free colored using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{O}(n^{\frac{3}{8}(1+\varepsilon)})$\end{document} colors. Moreover, the set Q and the conflict-free coloring can be computed in polynomial time, with high probability. Our result is obtained by introducing a general probabilistic re-coloring technique, which we call quasi-conflict-free coloring, and which may be of independent interest. A further application of this technique is also given.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540323013</identifier><identifier>ISBN: 3540323015</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540322887</identifier><identifier>EISBN: 3540322884</identifier><identifier>DOI: 10.1007/11672142_20</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Coloring Problem ; Computer science; control theory; systems ; Exact sciences and technology ; Free Coloring ; Grid Case ; Range Space ; Theoretical computing ; Unique Color</subject><ispartof>Lecture notes in computer science, 2006, p.254-263</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11672142_20$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11672142_20$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19162788$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Durand, Bruno</contributor><contributor>Thomas, Wolfgang</contributor><creatorcontrib>Elbassioni, Khaled</creatorcontrib><creatorcontrib>Mustafa, Nabil H.</creatorcontrib><title>Conflict-Free Colorings of Rectangles Ranges</title><title>Lecture notes in computer science</title><description>Given the range space (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P,\mathcal{R}$\end{document}), where P is a set of n points in ℝ2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}$\end{document} is the family of subsets of P induced by all axis-parallel rectangles, the conflict-free coloring problem asks for a coloring of P with the minimum number of colors such that (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P,\mathcal{R}$\end{document}) is conflict-free. We study the following question: Given P, is it possible to add a small set of points Q such that (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P \cup Q,\mathcal{R}$\end{document}) can be colored with fewer colors than (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P,\mathcal{R}$\end{document})? Our main result is the following: given P, and any ε ≥ 0, one can always add a set Q of O(n1 − ε) points such that P ∪ Q can be conflict-free colored using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{O}(n^{\frac{3}{8}(1+\varepsilon)})$\end{document} colors. Moreover, the set Q and the conflict-free coloring can be computed in polynomial time, with high probability. Our result is obtained by introducing a general probabilistic re-coloring technique, which we call quasi-conflict-free coloring, and which may be of independent interest. A further application of this technique is also given.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Coloring Problem</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Free Coloring</subject><subject>Grid Case</subject><subject>Range Space</subject><subject>Theoretical computing</subject><subject>Unique Color</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540323013</isbn><isbn>3540323015</isbn><isbn>9783540322887</isbn><isbn>3540322884</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkE9Lw0AUxNd_YKg9-QVy8SAYfW_fNvv2KKFVoSAUPS-b7W6JxiRke_Hbm1IPncsc5scwjBC3CI8IoJ8QSy1RSSvhTMyNZlooICmZ9bnIsEQsiJS5OMkIkC5FBgSyMFrRtZin9AWTSAKyysRD1Xexbfy-WI0h5FXf9mPT7VLex3wT_N51uzakfDN5SDfiKro2hfm_z8TnavlRvRbr95e36nldDBLNvoiwlRyAgqJpEMstB-mRw4IwlioqjN7IaGpnKLga3ITV2rMGvWV2paaZuDv2Di5518bRdb5JdhibHzf-WjRYSs08cfdHLg2H0WG0dd9_J4tgD4_Zk8foD4P3VcA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Elbassioni, Khaled</creator><creator>Mustafa, Nabil H.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Conflict-Free Colorings of Rectangles Ranges</title><author>Elbassioni, Khaled ; Mustafa, Nabil H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-f0d28e03e4333482d8e2c18e531f64f41fc92f9ba93eab0a433b7c8707d88a673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Coloring Problem</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Free Coloring</topic><topic>Grid Case</topic><topic>Range Space</topic><topic>Theoretical computing</topic><topic>Unique Color</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elbassioni, Khaled</creatorcontrib><creatorcontrib>Mustafa, Nabil H.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elbassioni, Khaled</au><au>Mustafa, Nabil H.</au><au>Durand, Bruno</au><au>Thomas, Wolfgang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Conflict-Free Colorings of Rectangles Ranges</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>254</spage><epage>263</epage><pages>254-263</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540323013</isbn><isbn>3540323015</isbn><eisbn>9783540322887</eisbn><eisbn>3540322884</eisbn><abstract>Given the range space (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P,\mathcal{R}$\end{document}), where P is a set of n points in ℝ2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}$\end{document} is the family of subsets of P induced by all axis-parallel rectangles, the conflict-free coloring problem asks for a coloring of P with the minimum number of colors such that (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P,\mathcal{R}$\end{document}) is conflict-free. We study the following question: Given P, is it possible to add a small set of points Q such that (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P \cup Q,\mathcal{R}$\end{document}) can be colored with fewer colors than (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P,\mathcal{R}$\end{document})? Our main result is the following: given P, and any ε ≥ 0, one can always add a set Q of O(n1 − ε) points such that P ∪ Q can be conflict-free colored using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{O}(n^{\frac{3}{8}(1+\varepsilon)})$\end{document} colors. Moreover, the set Q and the conflict-free coloring can be computed in polynomial time, with high probability. Our result is obtained by introducing a general probabilistic re-coloring technique, which we call quasi-conflict-free coloring, and which may be of independent interest. A further application of this technique is also given.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11672142_20</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.254-263
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19162788
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Coloring Problem
Computer science
control theory
systems
Exact sciences and technology
Free Coloring
Grid Case
Range Space
Theoretical computing
Unique Color
title Conflict-Free Colorings of Rectangles Ranges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Conflict-Free%20Colorings%20of%20Rectangles%20Ranges&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Elbassioni,%20Khaled&rft.date=2006&rft.spage=254&rft.epage=263&rft.pages=254-263&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540323013&rft.isbn_list=3540323015&rft_id=info:doi/10.1007/11672142_20&rft_dat=%3Cpascalfrancis_sprin%3E19162788%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540322887&rft.eisbn_list=3540322884&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true