Conflict-Free Colorings of Rectangles Ranges
Given the range space (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P,\mathcal{R}$\end{document}), where P is a set...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given the range space (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$P,\mathcal{R}$\end{document}), where P is a set of n points in ℝ2 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{R}$\end{document} is the family of subsets of P induced by all axis-parallel rectangles, the conflict-free coloring problem asks for a coloring of P with the minimum number of colors such that (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$P,\mathcal{R}$\end{document}) is conflict-free. We study the following question: Given P, is it possible to add a small set of points Q such that (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$P \cup Q,\mathcal{R}$\end{document}) can be colored with fewer colors than (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$P,\mathcal{R}$\end{document})? Our main result is the following: given P, and any ε ≥ 0, one can always add a set Q of O(n1 − ε) points such that P ∪ Q can be conflict-free colored using \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\tilde{O}(n^{\frac{3}{8}(1+\varepsilon)})$\end{document} colors. Moreover, the set Q and the conflict-free coloring can be computed in polynomial time, with high probability. Our result is obtained by introducing a general probabilistic re-coloring technique, which we call quasi-conflict-free coloring, and which may be of independent interest. A further application of this technique is also given. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11672142_20 |