The Power of Linear Functions
The linear lambda calculus is very weak in terms of expressive power: in particular, all functions terminate in linear time. In this paper we consider a simple extension with Booleans, natural numbers and a linear iterator. We show properties of this linear version of Gödel’s System \documentclass[1...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134 |
---|---|
container_issue | |
container_start_page | 119 |
container_title | |
container_volume | |
creator | Alves, Sandra Fernández, Maribel Florido, Mário Mackie, Ian |
description | The linear lambda calculus is very weak in terms of expressive power: in particular, all functions terminate in linear time. In this paper we consider a simple extension with Booleans, natural numbers and a linear iterator. We show properties of this linear version of Gödel’s System \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{T}$\end{document} and study the class of functions that can be represented. Surprisingly, this linear calculus is extremely expressive: it is as powerful as System \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{T}$\end{document} |
doi_str_mv | 10.1007/11874683_8 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19162562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19162562</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-3fc3b58064d4c4e3ead0a3b58c983a582d3031c85a8a9b6b4120668df59f34f33</originalsourceid><addsrcrecordid>eNpVUE1Lw0AUXL_AUnvxLuQieIm-l7e7eXuU0qoQ0EM9L5vNrkZrUrIV8d-bUkGcy8DMMAMjxDnCNQKUN4hcSs1k-UDMTMmkJEgllVGHYoIaMSeS5uifx3wsJkBQ5KaUdCpmKb3BCEJtACbiYvUasqf-KwxZH7Oq7YIbsuVn57dt36UzcRLdOoXZL0_F83Kxmt_n1ePdw_y2yjcF8jan6KlWDFo20stAwTXgdoo3TE5x0dA46Fk5dqbWtcQCtOYmKhNJRqKpuNz3blzybh0H1_k22c3Qfrjh26JBXShdjLmrfS6NVvcSBlv3_XuyCHb3kP17iH4AIVhPxQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Power of Linear Functions</title><source>Springer Books</source><creator>Alves, Sandra ; Fernández, Maribel ; Florido, Mário ; Mackie, Ian</creator><contributor>Ésik, Zoltán</contributor><creatorcontrib>Alves, Sandra ; Fernández, Maribel ; Florido, Mário ; Mackie, Ian ; Ésik, Zoltán</creatorcontrib><description>The linear lambda calculus is very weak in terms of expressive power: in particular, all functions terminate in linear time. In this paper we consider a simple extension with Booleans, natural numbers and a linear iterator. We show properties of this linear version of Gödel’s System \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{T}$\end{document} and study the class of functions that can be represented. Surprisingly, this linear calculus is extremely expressive: it is as powerful as System \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{T}$\end{document}</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540454588</identifier><identifier>ISBN: 3540454586</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540454595</identifier><identifier>EISBN: 3540454594</identifier><identifier>DOI: 10.1007/11874683_8</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Closed Term ; Computer science; control theory; systems ; Contraction Rule ; Exact sciences and technology ; Iterative Type ; Lambda Calculus ; Linear Logic ; Logical, boolean and switching functions ; Theoretical computing</subject><ispartof>Computer Science Logic, 2006, p.119-134</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11874683_8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11874683_8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19162562$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Ésik, Zoltán</contributor><creatorcontrib>Alves, Sandra</creatorcontrib><creatorcontrib>Fernández, Maribel</creatorcontrib><creatorcontrib>Florido, Mário</creatorcontrib><creatorcontrib>Mackie, Ian</creatorcontrib><title>The Power of Linear Functions</title><title>Computer Science Logic</title><description>The linear lambda calculus is very weak in terms of expressive power: in particular, all functions terminate in linear time. In this paper we consider a simple extension with Booleans, natural numbers and a linear iterator. We show properties of this linear version of Gödel’s System \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{T}$\end{document} and study the class of functions that can be represented. Surprisingly, this linear calculus is extremely expressive: it is as powerful as System \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{T}$\end{document}</description><subject>Applied sciences</subject><subject>Closed Term</subject><subject>Computer science; control theory; systems</subject><subject>Contraction Rule</subject><subject>Exact sciences and technology</subject><subject>Iterative Type</subject><subject>Lambda Calculus</subject><subject>Linear Logic</subject><subject>Logical, boolean and switching functions</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540454588</isbn><isbn>3540454586</isbn><isbn>9783540454595</isbn><isbn>3540454594</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVUE1Lw0AUXL_AUnvxLuQieIm-l7e7eXuU0qoQ0EM9L5vNrkZrUrIV8d-bUkGcy8DMMAMjxDnCNQKUN4hcSs1k-UDMTMmkJEgllVGHYoIaMSeS5uifx3wsJkBQ5KaUdCpmKb3BCEJtACbiYvUasqf-KwxZH7Oq7YIbsuVn57dt36UzcRLdOoXZL0_F83Kxmt_n1ePdw_y2yjcF8jan6KlWDFo20stAwTXgdoo3TE5x0dA46Fk5dqbWtcQCtOYmKhNJRqKpuNz3blzybh0H1_k22c3Qfrjh26JBXShdjLmrfS6NVvcSBlv3_XuyCHb3kP17iH4AIVhPxQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Alves, Sandra</creator><creator>Fernández, Maribel</creator><creator>Florido, Mário</creator><creator>Mackie, Ian</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>The Power of Linear Functions</title><author>Alves, Sandra ; Fernández, Maribel ; Florido, Mário ; Mackie, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-3fc3b58064d4c4e3ead0a3b58c983a582d3031c85a8a9b6b4120668df59f34f33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Closed Term</topic><topic>Computer science; control theory; systems</topic><topic>Contraction Rule</topic><topic>Exact sciences and technology</topic><topic>Iterative Type</topic><topic>Lambda Calculus</topic><topic>Linear Logic</topic><topic>Logical, boolean and switching functions</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Sandra</creatorcontrib><creatorcontrib>Fernández, Maribel</creatorcontrib><creatorcontrib>Florido, Mário</creatorcontrib><creatorcontrib>Mackie, Ian</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Sandra</au><au>Fernández, Maribel</au><au>Florido, Mário</au><au>Mackie, Ian</au><au>Ésik, Zoltán</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Power of Linear Functions</atitle><btitle>Computer Science Logic</btitle><date>2006</date><risdate>2006</risdate><spage>119</spage><epage>134</epage><pages>119-134</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540454588</isbn><isbn>3540454586</isbn><eisbn>9783540454595</eisbn><eisbn>3540454594</eisbn><abstract>The linear lambda calculus is very weak in terms of expressive power: in particular, all functions terminate in linear time. In this paper we consider a simple extension with Booleans, natural numbers and a linear iterator. We show properties of this linear version of Gödel’s System \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{T}$\end{document} and study the class of functions that can be represented. Surprisingly, this linear calculus is extremely expressive: it is as powerful as System \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{T}$\end{document}</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11874683_8</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computer Science Logic, 2006, p.119-134 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19162562 |
source | Springer Books |
subjects | Applied sciences Closed Term Computer science control theory systems Contraction Rule Exact sciences and technology Iterative Type Lambda Calculus Linear Logic Logical, boolean and switching functions Theoretical computing |
title | The Power of Linear Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Power%20of%20Linear%20Functions&rft.btitle=Computer%20Science%20Logic&rft.au=Alves,%20Sandra&rft.date=2006&rft.spage=119&rft.epage=134&rft.pages=119-134&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540454588&rft.isbn_list=3540454586&rft_id=info:doi/10.1007/11874683_8&rft_dat=%3Cpascalfrancis_sprin%3E19162562%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540454595&rft.eisbn_list=3540454594&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |