The Power of Linear Functions

The linear lambda calculus is very weak in terms of expressive power: in particular, all functions terminate in linear time. In this paper we consider a simple extension with Booleans, natural numbers and a linear iterator. We show properties of this linear version of Gödel’s System \documentclass[1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alves, Sandra, Fernández, Maribel, Florido, Mário, Mackie, Ian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue
container_start_page 119
container_title
container_volume
creator Alves, Sandra
Fernández, Maribel
Florido, Mário
Mackie, Ian
description The linear lambda calculus is very weak in terms of expressive power: in particular, all functions terminate in linear time. In this paper we consider a simple extension with Booleans, natural numbers and a linear iterator. We show properties of this linear version of Gödel’s System \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}$\end{document} and study the class of functions that can be represented. Surprisingly, this linear calculus is extremely expressive: it is as powerful as System \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}$\end{document}
doi_str_mv 10.1007/11874683_8
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19162562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19162562</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-3fc3b58064d4c4e3ead0a3b58c983a582d3031c85a8a9b6b4120668df59f34f33</originalsourceid><addsrcrecordid>eNpVUE1Lw0AUXL_AUnvxLuQieIm-l7e7eXuU0qoQ0EM9L5vNrkZrUrIV8d-bUkGcy8DMMAMjxDnCNQKUN4hcSs1k-UDMTMmkJEgllVGHYoIaMSeS5uifx3wsJkBQ5KaUdCpmKb3BCEJtACbiYvUasqf-KwxZH7Oq7YIbsuVn57dt36UzcRLdOoXZL0_F83Kxmt_n1ePdw_y2yjcF8jan6KlWDFo20stAwTXgdoo3TE5x0dA46Fk5dqbWtcQCtOYmKhNJRqKpuNz3blzybh0H1_k22c3Qfrjh26JBXShdjLmrfS6NVvcSBlv3_XuyCHb3kP17iH4AIVhPxQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Power of Linear Functions</title><source>Springer Books</source><creator>Alves, Sandra ; Fernández, Maribel ; Florido, Mário ; Mackie, Ian</creator><contributor>Ésik, Zoltán</contributor><creatorcontrib>Alves, Sandra ; Fernández, Maribel ; Florido, Mário ; Mackie, Ian ; Ésik, Zoltán</creatorcontrib><description>The linear lambda calculus is very weak in terms of expressive power: in particular, all functions terminate in linear time. In this paper we consider a simple extension with Booleans, natural numbers and a linear iterator. We show properties of this linear version of Gödel’s System \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}$\end{document} and study the class of functions that can be represented. Surprisingly, this linear calculus is extremely expressive: it is as powerful as System \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}$\end{document}</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540454588</identifier><identifier>ISBN: 3540454586</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540454595</identifier><identifier>EISBN: 3540454594</identifier><identifier>DOI: 10.1007/11874683_8</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Closed Term ; Computer science; control theory; systems ; Contraction Rule ; Exact sciences and technology ; Iterative Type ; Lambda Calculus ; Linear Logic ; Logical, boolean and switching functions ; Theoretical computing</subject><ispartof>Computer Science Logic, 2006, p.119-134</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11874683_8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11874683_8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19162562$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Ésik, Zoltán</contributor><creatorcontrib>Alves, Sandra</creatorcontrib><creatorcontrib>Fernández, Maribel</creatorcontrib><creatorcontrib>Florido, Mário</creatorcontrib><creatorcontrib>Mackie, Ian</creatorcontrib><title>The Power of Linear Functions</title><title>Computer Science Logic</title><description>The linear lambda calculus is very weak in terms of expressive power: in particular, all functions terminate in linear time. In this paper we consider a simple extension with Booleans, natural numbers and a linear iterator. We show properties of this linear version of Gödel’s System \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}$\end{document} and study the class of functions that can be represented. Surprisingly, this linear calculus is extremely expressive: it is as powerful as System \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}$\end{document}</description><subject>Applied sciences</subject><subject>Closed Term</subject><subject>Computer science; control theory; systems</subject><subject>Contraction Rule</subject><subject>Exact sciences and technology</subject><subject>Iterative Type</subject><subject>Lambda Calculus</subject><subject>Linear Logic</subject><subject>Logical, boolean and switching functions</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540454588</isbn><isbn>3540454586</isbn><isbn>9783540454595</isbn><isbn>3540454594</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVUE1Lw0AUXL_AUnvxLuQieIm-l7e7eXuU0qoQ0EM9L5vNrkZrUrIV8d-bUkGcy8DMMAMjxDnCNQKUN4hcSs1k-UDMTMmkJEgllVGHYoIaMSeS5uifx3wsJkBQ5KaUdCpmKb3BCEJtACbiYvUasqf-KwxZH7Oq7YIbsuVn57dt36UzcRLdOoXZL0_F83Kxmt_n1ePdw_y2yjcF8jan6KlWDFo20stAwTXgdoo3TE5x0dA46Fk5dqbWtcQCtOYmKhNJRqKpuNz3blzybh0H1_k22c3Qfrjh26JBXShdjLmrfS6NVvcSBlv3_XuyCHb3kP17iH4AIVhPxQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Alves, Sandra</creator><creator>Fernández, Maribel</creator><creator>Florido, Mário</creator><creator>Mackie, Ian</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>The Power of Linear Functions</title><author>Alves, Sandra ; Fernández, Maribel ; Florido, Mário ; Mackie, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-3fc3b58064d4c4e3ead0a3b58c983a582d3031c85a8a9b6b4120668df59f34f33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Closed Term</topic><topic>Computer science; control theory; systems</topic><topic>Contraction Rule</topic><topic>Exact sciences and technology</topic><topic>Iterative Type</topic><topic>Lambda Calculus</topic><topic>Linear Logic</topic><topic>Logical, boolean and switching functions</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Sandra</creatorcontrib><creatorcontrib>Fernández, Maribel</creatorcontrib><creatorcontrib>Florido, Mário</creatorcontrib><creatorcontrib>Mackie, Ian</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Sandra</au><au>Fernández, Maribel</au><au>Florido, Mário</au><au>Mackie, Ian</au><au>Ésik, Zoltán</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Power of Linear Functions</atitle><btitle>Computer Science Logic</btitle><date>2006</date><risdate>2006</risdate><spage>119</spage><epage>134</epage><pages>119-134</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540454588</isbn><isbn>3540454586</isbn><eisbn>9783540454595</eisbn><eisbn>3540454594</eisbn><abstract>The linear lambda calculus is very weak in terms of expressive power: in particular, all functions terminate in linear time. In this paper we consider a simple extension with Booleans, natural numbers and a linear iterator. We show properties of this linear version of Gödel’s System \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}$\end{document} and study the class of functions that can be represented. Surprisingly, this linear calculus is extremely expressive: it is as powerful as System \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}$\end{document}</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11874683_8</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer Science Logic, 2006, p.119-134
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19162562
source Springer Books
subjects Applied sciences
Closed Term
Computer science
control theory
systems
Contraction Rule
Exact sciences and technology
Iterative Type
Lambda Calculus
Linear Logic
Logical, boolean and switching functions
Theoretical computing
title The Power of Linear Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Power%20of%20Linear%20Functions&rft.btitle=Computer%20Science%20Logic&rft.au=Alves,%20Sandra&rft.date=2006&rft.spage=119&rft.epage=134&rft.pages=119-134&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540454588&rft.isbn_list=3540454586&rft_id=info:doi/10.1007/11874683_8&rft_dat=%3Cpascalfrancis_sprin%3E19162562%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540454595&rft.eisbn_list=3540454594&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true