The Power of Linear Functions

The linear lambda calculus is very weak in terms of expressive power: in particular, all functions terminate in linear time. In this paper we consider a simple extension with Booleans, natural numbers and a linear iterator. We show properties of this linear version of Gödel’s System \documentclass[1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alves, Sandra, Fernández, Maribel, Florido, Mário, Mackie, Ian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The linear lambda calculus is very weak in terms of expressive power: in particular, all functions terminate in linear time. In this paper we consider a simple extension with Booleans, natural numbers and a linear iterator. We show properties of this linear version of Gödel’s System \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}$\end{document} and study the class of functions that can be represented. Surprisingly, this linear calculus is extremely expressive: it is as powerful as System \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}$\end{document}
ISSN:0302-9743
1611-3349
DOI:10.1007/11874683_8