Robust Text-Independent Speaker Identification Using Hybrid PCA&LDA

We have been building a text-independent speaker recognition system in noisy conditions. In this paper, we propose a novel feature using hybrid PCA/LDA. The feature is created from the convectional MFCC(mel-frequency cepstral coefficients) by transforming them using a matrix. The matrix consists of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kim, Min-Seok, Yu, Ha-Jin, Kwak, Keun-Chang, Chi, Su-Young
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have been building a text-independent speaker recognition system in noisy conditions. In this paper, we propose a novel feature using hybrid PCA/LDA. The feature is created from the convectional MFCC(mel-frequency cepstral coefficients) by transforming them using a matrix. The matrix consists of some components from the PCA and LDA transformation matrices. We tested the new feature using Aurora project Database 2 which is intended for the evaluation of algorithms for front-end feature extraction algorithms in background noise. The proposed method outperformed in all noise types and noise levels. It reduced the relative recognition error by 63.6% than using the baseline feature when the SNR is 15dB.
ISSN:0302-9743
1611-3349
DOI:10.1007/11925231_102