Incorporating Prior Knowledge into Multi-label Boosting for Cross-Modal Image Annotation and Retrieval
Automatic image annotation (AIA) has proved to be an effective and promising solution to automatically deduce the high-level semantics from low-level visual features. In this paper, we formulate the task of image annotation as a multi-label, multi class semantic image classification problem and prop...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 415 |
---|---|
container_issue | |
container_start_page | 404 |
container_title | |
container_volume | |
creator | Li, Wei Sun, Maosong |
description | Automatic image annotation (AIA) has proved to be an effective and promising solution to automatically deduce the high-level semantics from low-level visual features. In this paper, we formulate the task of image annotation as a multi-label, multi class semantic image classification problem and propose a simple yet effective joint classification framework in which probabilistic multi-label boosting and contextual semantic constraints are integrated seamlessly. We conducted experiments on a medium-sized image collection including about 5000 images from Corel Stock Photo CDs. The experimental results demonstrated that the annotation performance of our proposed method is comparable to state-of-the-art approaches, showing the effectiveness and feasibility of the proposed unified framework. |
doi_str_mv | 10.1007/11880592_31 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19105092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19105092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-d1a0dca82c4bf6ffcb46e3723a569ce58ae5e3f95f406b06c2f0ff102cddacbc3</originalsourceid><addsrcrecordid>eNpN0DtPwzAUBWDzkiilE3_ACwND4F47dpKxVDwqWoEQzJHj2FXAtSs7gPj3BNqBu9zhfDrDIeQM4RIBiivEsgRRsZrjHjnhIodcMl7IfTJCiZhxnlcHu0AUJeAhGQEHllVFzo_JJKU3GI5jySQbETv3OsRNiKrv_Io-xS5E-uDDlzPtytDO94EuP1zfZU41xtHrENKftIObxZBStgytcnS-VoOfeh_6oSp4qnxLn00fO_Op3Ck5ssolM9n9MXm9vXmZ3WeLx7v5bLrINJPYZy0qaLUqmc4bK63VTS4NLxhXQlbaiFIZYbithM1BNiA1s2AtAtNtq3Sj-Zicb3s3KmnlbFRed6nexG6t4neNFYKAig3uYuvSEPmViXUTwnuqEerflet_K_Mfn6psEA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Incorporating Prior Knowledge into Multi-label Boosting for Cross-Modal Image Annotation and Retrieval</title><source>Springer Books</source><creator>Li, Wei ; Sun, Maosong</creator><contributor>Ng, Hwee Tou ; Ji, Donghong ; Leong, Mun-Kew ; Kan, Min-Yen</contributor><creatorcontrib>Li, Wei ; Sun, Maosong ; Ng, Hwee Tou ; Ji, Donghong ; Leong, Mun-Kew ; Kan, Min-Yen</creatorcontrib><description>Automatic image annotation (AIA) has proved to be an effective and promising solution to automatically deduce the high-level semantics from low-level visual features. In this paper, we formulate the task of image annotation as a multi-label, multi class semantic image classification problem and propose a simple yet effective joint classification framework in which probabilistic multi-label boosting and contextual semantic constraints are integrated seamlessly. We conducted experiments on a medium-sized image collection including about 5000 images from Corel Stock Photo CDs. The experimental results demonstrated that the annotation performance of our proposed method is comparable to state-of-the-art approaches, showing the effectiveness and feasibility of the proposed unified framework.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540457801</identifier><identifier>ISBN: 9783540457800</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540462376</identifier><identifier>EISBN: 9783540462378</identifier><identifier>DOI: 10.1007/11880592_31</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annotation Model ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Confidence Score ; Exact sciences and technology ; Image Annotation ; Information systems. Data bases ; Latent Semantic Analysis ; Memory organisation. Data processing ; Pattern recognition. Digital image processing. Computational geometry ; Semantic Label ; Software</subject><ispartof>Information Retrieval Technology, 2006, p.404-415</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-d1a0dca82c4bf6ffcb46e3723a569ce58ae5e3f95f406b06c2f0ff102cddacbc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11880592_31$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11880592_31$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19105092$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Ng, Hwee Tou</contributor><contributor>Ji, Donghong</contributor><contributor>Leong, Mun-Kew</contributor><contributor>Kan, Min-Yen</contributor><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Sun, Maosong</creatorcontrib><title>Incorporating Prior Knowledge into Multi-label Boosting for Cross-Modal Image Annotation and Retrieval</title><title>Information Retrieval Technology</title><description>Automatic image annotation (AIA) has proved to be an effective and promising solution to automatically deduce the high-level semantics from low-level visual features. In this paper, we formulate the task of image annotation as a multi-label, multi class semantic image classification problem and propose a simple yet effective joint classification framework in which probabilistic multi-label boosting and contextual semantic constraints are integrated seamlessly. We conducted experiments on a medium-sized image collection including about 5000 images from Corel Stock Photo CDs. The experimental results demonstrated that the annotation performance of our proposed method is comparable to state-of-the-art approaches, showing the effectiveness and feasibility of the proposed unified framework.</description><subject>Annotation Model</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Confidence Score</subject><subject>Exact sciences and technology</subject><subject>Image Annotation</subject><subject>Information systems. Data bases</subject><subject>Latent Semantic Analysis</subject><subject>Memory organisation. Data processing</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Semantic Label</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540457801</isbn><isbn>9783540457800</isbn><isbn>3540462376</isbn><isbn>9783540462378</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpN0DtPwzAUBWDzkiilE3_ACwND4F47dpKxVDwqWoEQzJHj2FXAtSs7gPj3BNqBu9zhfDrDIeQM4RIBiivEsgRRsZrjHjnhIodcMl7IfTJCiZhxnlcHu0AUJeAhGQEHllVFzo_JJKU3GI5jySQbETv3OsRNiKrv_Io-xS5E-uDDlzPtytDO94EuP1zfZU41xtHrENKftIObxZBStgytcnS-VoOfeh_6oSp4qnxLn00fO_Op3Ck5ssolM9n9MXm9vXmZ3WeLx7v5bLrINJPYZy0qaLUqmc4bK63VTS4NLxhXQlbaiFIZYbithM1BNiA1s2AtAtNtq3Sj-Zicb3s3KmnlbFRed6nexG6t4neNFYKAig3uYuvSEPmViXUTwnuqEerflet_K_Mfn6psEA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Li, Wei</creator><creator>Sun, Maosong</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Incorporating Prior Knowledge into Multi-label Boosting for Cross-Modal Image Annotation and Retrieval</title><author>Li, Wei ; Sun, Maosong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-d1a0dca82c4bf6ffcb46e3723a569ce58ae5e3f95f406b06c2f0ff102cddacbc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Annotation Model</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Confidence Score</topic><topic>Exact sciences and technology</topic><topic>Image Annotation</topic><topic>Information systems. Data bases</topic><topic>Latent Semantic Analysis</topic><topic>Memory organisation. Data processing</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Semantic Label</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Sun, Maosong</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wei</au><au>Sun, Maosong</au><au>Ng, Hwee Tou</au><au>Ji, Donghong</au><au>Leong, Mun-Kew</au><au>Kan, Min-Yen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Incorporating Prior Knowledge into Multi-label Boosting for Cross-Modal Image Annotation and Retrieval</atitle><btitle>Information Retrieval Technology</btitle><date>2006</date><risdate>2006</risdate><spage>404</spage><epage>415</epage><pages>404-415</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540457801</isbn><isbn>9783540457800</isbn><eisbn>3540462376</eisbn><eisbn>9783540462378</eisbn><abstract>Automatic image annotation (AIA) has proved to be an effective and promising solution to automatically deduce the high-level semantics from low-level visual features. In this paper, we formulate the task of image annotation as a multi-label, multi class semantic image classification problem and propose a simple yet effective joint classification framework in which probabilistic multi-label boosting and contextual semantic constraints are integrated seamlessly. We conducted experiments on a medium-sized image collection including about 5000 images from Corel Stock Photo CDs. The experimental results demonstrated that the annotation performance of our proposed method is comparable to state-of-the-art approaches, showing the effectiveness and feasibility of the proposed unified framework.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11880592_31</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Information Retrieval Technology, 2006, p.404-415 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19105092 |
source | Springer Books |
subjects | Annotation Model Applied sciences Artificial intelligence Computer science control theory systems Confidence Score Exact sciences and technology Image Annotation Information systems. Data bases Latent Semantic Analysis Memory organisation. Data processing Pattern recognition. Digital image processing. Computational geometry Semantic Label Software |
title | Incorporating Prior Knowledge into Multi-label Boosting for Cross-Modal Image Annotation and Retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Incorporating%20Prior%20Knowledge%20into%20Multi-label%20Boosting%20for%20Cross-Modal%20Image%20Annotation%20and%20Retrieval&rft.btitle=Information%20Retrieval%20Technology&rft.au=Li,%20Wei&rft.date=2006&rft.spage=404&rft.epage=415&rft.pages=404-415&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540457801&rft.isbn_list=9783540457800&rft_id=info:doi/10.1007/11880592_31&rft_dat=%3Cpascalfrancis_sprin%3E19105092%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540462376&rft.eisbn_list=9783540462378&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |