Incorporating Prior Knowledge into Multi-label Boosting for Cross-Modal Image Annotation and Retrieval

Automatic image annotation (AIA) has proved to be an effective and promising solution to automatically deduce the high-level semantics from low-level visual features. In this paper, we formulate the task of image annotation as a multi-label, multi class semantic image classification problem and prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Wei, Sun, Maosong
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatic image annotation (AIA) has proved to be an effective and promising solution to automatically deduce the high-level semantics from low-level visual features. In this paper, we formulate the task of image annotation as a multi-label, multi class semantic image classification problem and propose a simple yet effective joint classification framework in which probabilistic multi-label boosting and contextual semantic constraints are integrated seamlessly. We conducted experiments on a medium-sized image collection including about 5000 images from Corel Stock Photo CDs. The experimental results demonstrated that the annotation performance of our proposed method is comparable to state-of-the-art approaches, showing the effectiveness and feasibility of the proposed unified framework.
ISSN:0302-9743
1611-3349
DOI:10.1007/11880592_31