Automated Face Identification Using Volume-Based Facial Models

Face represents complex, multi dimensional, meaningful visual stimuli. Computational models for face recognition represent the problem as a high dimensional pattern recognition problem. This paper introduces an innovative facial identification method using eigenface approach on volume-based graphics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huang, Jeffrey, Maheshwari, Neha, Fang, Shiaofen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Face represents complex, multi dimensional, meaningful visual stimuli. Computational models for face recognition represent the problem as a high dimensional pattern recognition problem. This paper introduces an innovative facial identification method using eigenface approach on volume-based graphics rather than 2D photo-images. We propose to convert polygon mesh surface to a volumetric representation by regular sampling in a volumetric space. Our motivation is to extend existing 2D facial analysis techniques to a 3D image space by taking advantage of use of the volumetric representation. We apply principle component analysis (PCA) for dimensionality reduction. Face feature patterns are projected onto a lower dimensional PCA sub-space that spans the known facial patterns. 3D eigenface feature space is constructed for face identification.
ISSN:0302-9743
1611-3349
DOI:10.1007/11784203_74