XML clustering by principal component analysis

XML is increasingly important in data exchange and information management. A large amount of efforts have been spent in developing efficient techniques for storing, querying, indexing and accessing XML documents. In This work we propose a new approach to clustering XML data. In contrast to previous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jianghui Liu, Wang, J.T.L., Hsu, W., Herbert, K.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:XML is increasingly important in data exchange and information management. A large amount of efforts have been spent in developing efficient techniques for storing, querying, indexing and accessing XML documents. In This work we propose a new approach to clustering XML data. In contrast to previous work, which focused on documents defined by different DTDs, the proposed method works for documents with the same DTD. Our approach is to extract features from documents, modeled by ordered labeled trees, and transform the documents to vectors in a high-dimensional Euclidean space based on the occurrences of the features in the documents. We then reduce the dimensionality of the vectors by principal component analysis (PCA) and cluster the vectors in the reduced dimensional space. The PCA enables one to identify vectors with co-occurrent features, thereby enhancing the accuracy of the clustering. Experimental results based on documents obtained from Wisconsin's XML data bank show the effectiveness and good performance of the proposed techniques.
ISSN:1082-3409
2375-0197
DOI:10.1109/ICTAI.2004.122