Emergence of a Flux Tube through a Partially Ionized Solar Atmosphere

For a magnetic flux tube, or indeed any flux, to emerge into the solar corona from the convection zone it must pass through the partially ionized layers of the lower atmosphere: the photosphere and the chromosphere. In such regions, the ion-neutral collisions lead to an increased resistivity for cur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2007-09, Vol.666 (1), p.541-546
Hauptverfasser: Arber, T. D, Haynes, M, Leake, J. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a magnetic flux tube, or indeed any flux, to emerge into the solar corona from the convection zone it must pass through the partially ionized layers of the lower atmosphere: the photosphere and the chromosphere. In such regions, the ion-neutral collisions lead to an increased resistivity for currents flowing across magnetic field lines. This Cowling resistivity can exceed the Spitzer resistivity by orders of magnitude and, in 2.5-dimensional (2.5D) simulations, has been shown to be sufficient to remove all cross field current from emerging flux. Here we extend this modeling into three dimensions (3D). Once again it is found that the Cowling resistivity removes perpendicular current. However, the presence of 3D structure prevents the simple comparison possible in 2.5D simulations. With a fully ionized atmosphere, the flux emergence leads to an unphysically low temperature region in the overlying corona, lifting of chromospheric material, and the subsequent onset of the Rayleigh-Taylor instability. Including neutrals removes the low-temperature region, lifts less chromospheric matter, and shows no signs of the Rayleigh-Taylor instability. Simulations of flux emergence therefore should include such a neutral layer in order to obtain the correct perpendicular current, remove the Rayleigh-Taylor instability, and get the correct temperature profile. In situations when the temperature is not important, i.e., when no simulated spectral emission is required, a simple model for the neutral layer is demonstrated to adequately reproduce the results of fully consistent simulations.
ISSN:0004-637X
1538-4357
DOI:10.1086/520046