Completely Reducible SL(2)-Homomorphisms

Let K be any field, and let G be a semisimple group over K. Suppose the characteristic of K is positive and is very good for G. We describe all group scheme homomorphisms φ: SL₂ → G whose image is geometrically G-completely reducible-or G-cr-in the sense of Serre; the description resembles that of i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2007-01, Vol.359 (9), p.4489-4510
Hauptverfasser: McNinch, George J., Testerman, Donna M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let K be any field, and let G be a semisimple group over K. Suppose the characteristic of K is positive and is very good for G. We describe all group scheme homomorphisms φ: SL₂ → G whose image is geometrically G-completely reducible-or G-cr-in the sense of Serre; the description resembles that of irreducible modules given by Steinberg's tensor product theorem. In case K is algebraically closed and G is simple, the result proved here was previously obtained by Liebeck and Seitz using different methods. A recent result shows the Lie algebra of the image of φ to be geometrically G-cr; this plays an important role in our proof.
ISSN:0002-9947
1088-6850
DOI:10.1090/S0002-9947-07-04289-4