Design considerations for high-current photodetectors

This paper outlines the design considerations for gigahertz-bandwidth, high-current p-i-n photodiodes utilizing InGaAs absorbers. The factors being investigated are photodetector intrinsic region length, intrinsic region doping density, temperature effects, illumination spot size, illumination wavel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 1999-08, Vol.17 (8), p.1443-1454
Hauptverfasser: Williams, K.J., Esman, R.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper outlines the design considerations for gigahertz-bandwidth, high-current p-i-n photodiodes utilizing InGaAs absorbers. The factors being investigated are photodetector intrinsic region length, intrinsic region doping density, temperature effects, illumination spot size, illumination wavelength, frequency, and illumination direction. Space-charge calculations are used to determine optimal device geometry and conditions which maximize saturation photocurrent. A thermal model is developed to study the effects of temperature on high-current photodetector performance. The thermal and space-charge model results are combined to emphasize the importance of thin intrinsic region lengths to obtain high current. Finally, a comparison between surface-illuminated p-i-n structures and waveguide structures is made to differentiate between the problems associated with achieving high current in each structure and to outline techniques to achieve maximum performance.
ISSN:0733-8724
1558-2213
DOI:10.1109/50.779167