Combining Reconstruction and Discrimination with Class-Specific Sparse Coding

Sparse coding is an important approach for the unsupervised learning of sensory features. In this contribution, we present two new methods that extend the traditional sparse coding approach with supervised components. Our goal is to increase the suitability of the learned features for classification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2007-07, Vol.19 (7), p.1897-1918
Hauptverfasser: Hasler, Stephan, Wersing, Heiko, Körner, Edgar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sparse coding is an important approach for the unsupervised learning of sensory features. In this contribution, we present two new methods that extend the traditional sparse coding approach with supervised components. Our goal is to increase the suitability of the learned features for classification tasks while keeping most of their general representation capability. We analyze the effect of the new methods using visualization on artificial data and discuss the results on two object test sets with regard to the properties of the found feature representation.
ISSN:0899-7667
1530-888X
DOI:10.1162/neco.2007.19.7.1897