Order Estimation and Discrimination Between Stationary and Time-Varying (TVAR) Autoregressive Models

For a set of T independent observations of the same N-variate correlated Gaussian process, we derive a method of estimating the order of an autoregressive (AR) model of this process, regardless of its stationary or time-varying nature. We also derive a test to discriminate between stationary AR mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2007-06, Vol.55 (6), p.2861-2876
Hauptverfasser: Abramovich, Y.I., Spencer, N.K., Turley, M.D.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a set of T independent observations of the same N-variate correlated Gaussian process, we derive a method of estimating the order of an autoregressive (AR) model of this process, regardless of its stationary or time-varying nature. We also derive a test to discriminate between stationary AR models of order m,AR(m), and time-varying autoregressive models of order m,TVAR(m). We demonstrate that within this technique the number T of independent identically distributed data samples required for order estimation and discrimination just exceeds the maximum possible order m max , which in many cases is significantly fewer than the dimension of the problem N
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2007.893966