Nonstationary Hidden Markov Models for Multiaspect Discriminative Feature Extraction From Radar Targets
This paper presents a new scheme for radar target recognition, in which we fuse sequential radar echoes from multiple target-radar aspect angles. The nonstationary hidden Markov model (NSHMM) is employed to characterize the sequential information contained in multiaspect radar echoes. Features from...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2007-05, Vol.55 (5), p.2203-2214 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2214 |
---|---|
container_issue | 5 |
container_start_page | 2203 |
container_title | IEEE transactions on signal processing |
container_volume | 55 |
creator | Zhu, Feng Zhang, Xian-Da Hu, Ya-Feng Xie, Deguang |
description | This paper presents a new scheme for radar target recognition, in which we fuse sequential radar echoes from multiple target-radar aspect angles. The nonstationary hidden Markov model (NSHMM) is employed to characterize the sequential information contained in multiaspect radar echoes. Features from echoes are extracted via the multirelax algorithm, and moments are used to reduce the extracted-feature dimensionality. The proposed NSHMM has many parameters and states to be estimated, so the Markov chain Monte Carlo sampling algorithm is adopted. Finally, this new scheme is demonstrated with experiments on inverse synthetic aperture radar data |
doi_str_mv | 10.1109/TSP.2007.892708 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18712042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4156439</ieee_id><sourcerecordid>34896650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-681e3b2c091293f707cc662fc6458b72ba25d802213507f3ce5f2d790ef4bc143</originalsourceid><addsrcrecordid>eNp9kc1LHEEQxQeJoDE5e8ilCcScZu3vj2NQNwZclWQD3prenmoZMzu9dvdI_O_Ty0oCOXiqgvq9R1W9pjkmeEYINqfLH7czirGaaUMV1nvNITGctJgr-ab2WLBWaHV30LzN-QFjwrmRh839dRxzcaWPo0vP6LLvOhjRwqVf8QktYgdDRiEmtJiG0ru8AV_QeZ996tf9WGVPgObgypQAXfwuyfmtE5qnuEbfXecSWrp0DyW_a_aDGzK8f6lHzc_5xfLssr26-frt7MtV66mRpZWaAFtRjw2hhgWFlfdS0uAlF3ql6MpR0WlMKWECq8A8iEA7ZTAEvvKEs6Pm8853k-LjBLnYdd0WhsGNEKdstTZMGSm25MmrJOPaSClwBT_-Bz7EKY31CqvrWoxLqip0uoN8ijknCHZTX1Rfagm223xszcdu87G7fKri04uty94NIbnR9_mfTCtCMaeV-7DjegD4O-ZESM4M-wNYhJix</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864534627</pqid></control><display><type>article</type><title>Nonstationary Hidden Markov Models for Multiaspect Discriminative Feature Extraction From Radar Targets</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Feng ; Zhang, Xian-Da ; Hu, Ya-Feng ; Xie, Deguang</creator><creatorcontrib>Zhu, Feng ; Zhang, Xian-Da ; Hu, Ya-Feng ; Xie, Deguang</creatorcontrib><description>This paper presents a new scheme for radar target recognition, in which we fuse sequential radar echoes from multiple target-radar aspect angles. The nonstationary hidden Markov model (NSHMM) is employed to characterize the sequential information contained in multiaspect radar echoes. Features from echoes are extracted via the multirelax algorithm, and moments are used to reduce the extracted-feature dimensionality. The proposed NSHMM has many parameters and states to be estimated, so the Markov chain Monte Carlo sampling algorithm is adopted. Finally, this new scheme is demonstrated with experiments on inverse synthetic aperture radar data</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2007.892708</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Computer simulation ; Data mining ; Echoes ; Exact sciences and technology ; Feature extraction ; Fuses ; Hidden Markov models ; high-range resolution profile (HRRP) ; Information science ; Information, signal and communications theory ; Inverse synthetic aperture radar ; Markov chain Monte Carlo (MCMC) ; Mathematical models ; Miscellaneous ; Monte Carlo methods ; nonstationary hidden Markov model (NSHMM) ; Radar applications ; Radar echoes ; radar target recognition ; Radar targets ; Sampling ; Sampling, quantization ; Signal and communications theory ; Signal processing ; State estimation ; Target recognition ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2007-05, Vol.55 (5), p.2203-2214</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-681e3b2c091293f707cc662fc6458b72ba25d802213507f3ce5f2d790ef4bc143</citedby><cites>FETCH-LOGICAL-c296t-681e3b2c091293f707cc662fc6458b72ba25d802213507f3ce5f2d790ef4bc143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4156439$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4156439$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18712042$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Zhang, Xian-Da</creatorcontrib><creatorcontrib>Hu, Ya-Feng</creatorcontrib><creatorcontrib>Xie, Deguang</creatorcontrib><title>Nonstationary Hidden Markov Models for Multiaspect Discriminative Feature Extraction From Radar Targets</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper presents a new scheme for radar target recognition, in which we fuse sequential radar echoes from multiple target-radar aspect angles. The nonstationary hidden Markov model (NSHMM) is employed to characterize the sequential information contained in multiaspect radar echoes. Features from echoes are extracted via the multirelax algorithm, and moments are used to reduce the extracted-feature dimensionality. The proposed NSHMM has many parameters and states to be estimated, so the Markov chain Monte Carlo sampling algorithm is adopted. Finally, this new scheme is demonstrated with experiments on inverse synthetic aperture radar data</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Data mining</subject><subject>Echoes</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Fuses</subject><subject>Hidden Markov models</subject><subject>high-range resolution profile (HRRP)</subject><subject>Information science</subject><subject>Information, signal and communications theory</subject><subject>Inverse synthetic aperture radar</subject><subject>Markov chain Monte Carlo (MCMC)</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Monte Carlo methods</subject><subject>nonstationary hidden Markov model (NSHMM)</subject><subject>Radar applications</subject><subject>Radar echoes</subject><subject>radar target recognition</subject><subject>Radar targets</subject><subject>Sampling</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>State estimation</subject><subject>Target recognition</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1LHEEQxQeJoDE5e8ilCcScZu3vj2NQNwZclWQD3prenmoZMzu9dvdI_O_Ty0oCOXiqgvq9R1W9pjkmeEYINqfLH7czirGaaUMV1nvNITGctJgr-ab2WLBWaHV30LzN-QFjwrmRh839dRxzcaWPo0vP6LLvOhjRwqVf8QktYgdDRiEmtJiG0ru8AV_QeZ996tf9WGVPgObgypQAXfwuyfmtE5qnuEbfXecSWrp0DyW_a_aDGzK8f6lHzc_5xfLssr26-frt7MtV66mRpZWaAFtRjw2hhgWFlfdS0uAlF3ql6MpR0WlMKWECq8A8iEA7ZTAEvvKEs6Pm8853k-LjBLnYdd0WhsGNEKdstTZMGSm25MmrJOPaSClwBT_-Bz7EKY31CqvrWoxLqip0uoN8ijknCHZTX1Rfagm223xszcdu87G7fKri04uty94NIbnR9_mfTCtCMaeV-7DjegD4O-ZESM4M-wNYhJix</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Zhu, Feng</creator><creator>Zhang, Xian-Da</creator><creator>Hu, Ya-Feng</creator><creator>Xie, Deguang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>200705</creationdate><title>Nonstationary Hidden Markov Models for Multiaspect Discriminative Feature Extraction From Radar Targets</title><author>Zhu, Feng ; Zhang, Xian-Da ; Hu, Ya-Feng ; Xie, Deguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-681e3b2c091293f707cc662fc6458b72ba25d802213507f3ce5f2d790ef4bc143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Data mining</topic><topic>Echoes</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Fuses</topic><topic>Hidden Markov models</topic><topic>high-range resolution profile (HRRP)</topic><topic>Information science</topic><topic>Information, signal and communications theory</topic><topic>Inverse synthetic aperture radar</topic><topic>Markov chain Monte Carlo (MCMC)</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Monte Carlo methods</topic><topic>nonstationary hidden Markov model (NSHMM)</topic><topic>Radar applications</topic><topic>Radar echoes</topic><topic>radar target recognition</topic><topic>Radar targets</topic><topic>Sampling</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>State estimation</topic><topic>Target recognition</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Zhang, Xian-Da</creatorcontrib><creatorcontrib>Hu, Ya-Feng</creatorcontrib><creatorcontrib>Xie, Deguang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Feng</au><au>Zhang, Xian-Da</au><au>Hu, Ya-Feng</au><au>Xie, Deguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonstationary Hidden Markov Models for Multiaspect Discriminative Feature Extraction From Radar Targets</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2007-05</date><risdate>2007</risdate><volume>55</volume><issue>5</issue><spage>2203</spage><epage>2214</epage><pages>2203-2214</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper presents a new scheme for radar target recognition, in which we fuse sequential radar echoes from multiple target-radar aspect angles. The nonstationary hidden Markov model (NSHMM) is employed to characterize the sequential information contained in multiaspect radar echoes. Features from echoes are extracted via the multirelax algorithm, and moments are used to reduce the extracted-feature dimensionality. The proposed NSHMM has many parameters and states to be estimated, so the Markov chain Monte Carlo sampling algorithm is adopted. Finally, this new scheme is demonstrated with experiments on inverse synthetic aperture radar data</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2007.892708</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2007-05, Vol.55 (5), p.2203-2214 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_pascalfrancis_primary_18712042 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Computer simulation Data mining Echoes Exact sciences and technology Feature extraction Fuses Hidden Markov models high-range resolution profile (HRRP) Information science Information, signal and communications theory Inverse synthetic aperture radar Markov chain Monte Carlo (MCMC) Mathematical models Miscellaneous Monte Carlo methods nonstationary hidden Markov model (NSHMM) Radar applications Radar echoes radar target recognition Radar targets Sampling Sampling, quantization Signal and communications theory Signal processing State estimation Target recognition Telecommunications and information theory |
title | Nonstationary Hidden Markov Models for Multiaspect Discriminative Feature Extraction From Radar Targets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonstationary%20Hidden%20Markov%20Models%20for%20Multiaspect%20Discriminative%20Feature%20Extraction%20From%20Radar%20Targets&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Zhu,%20Feng&rft.date=2007-05&rft.volume=55&rft.issue=5&rft.spage=2203&rft.epage=2214&rft.pages=2203-2214&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2007.892708&rft_dat=%3Cproquest_RIE%3E34896650%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864534627&rft_id=info:pmid/&rft_ieee_id=4156439&rfr_iscdi=true |