Nonstationary Hidden Markov Models for Multiaspect Discriminative Feature Extraction From Radar Targets

This paper presents a new scheme for radar target recognition, in which we fuse sequential radar echoes from multiple target-radar aspect angles. The nonstationary hidden Markov model (NSHMM) is employed to characterize the sequential information contained in multiaspect radar echoes. Features from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2007-05, Vol.55 (5), p.2203-2214
Hauptverfasser: Zhu, Feng, Zhang, Xian-Da, Hu, Ya-Feng, Xie, Deguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2214
container_issue 5
container_start_page 2203
container_title IEEE transactions on signal processing
container_volume 55
creator Zhu, Feng
Zhang, Xian-Da
Hu, Ya-Feng
Xie, Deguang
description This paper presents a new scheme for radar target recognition, in which we fuse sequential radar echoes from multiple target-radar aspect angles. The nonstationary hidden Markov model (NSHMM) is employed to characterize the sequential information contained in multiaspect radar echoes. Features from echoes are extracted via the multirelax algorithm, and moments are used to reduce the extracted-feature dimensionality. The proposed NSHMM has many parameters and states to be estimated, so the Markov chain Monte Carlo sampling algorithm is adopted. Finally, this new scheme is demonstrated with experiments on inverse synthetic aperture radar data
doi_str_mv 10.1109/TSP.2007.892708
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18712042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4156439</ieee_id><sourcerecordid>34896650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-681e3b2c091293f707cc662fc6458b72ba25d802213507f3ce5f2d790ef4bc143</originalsourceid><addsrcrecordid>eNp9kc1LHEEQxQeJoDE5e8ilCcScZu3vj2NQNwZclWQD3prenmoZMzu9dvdI_O_Ty0oCOXiqgvq9R1W9pjkmeEYINqfLH7czirGaaUMV1nvNITGctJgr-ab2WLBWaHV30LzN-QFjwrmRh839dRxzcaWPo0vP6LLvOhjRwqVf8QktYgdDRiEmtJiG0ru8AV_QeZ996tf9WGVPgObgypQAXfwuyfmtE5qnuEbfXecSWrp0DyW_a_aDGzK8f6lHzc_5xfLssr26-frt7MtV66mRpZWaAFtRjw2hhgWFlfdS0uAlF3ql6MpR0WlMKWECq8A8iEA7ZTAEvvKEs6Pm8853k-LjBLnYdd0WhsGNEKdstTZMGSm25MmrJOPaSClwBT_-Bz7EKY31CqvrWoxLqip0uoN8ijknCHZTX1Rfagm223xszcdu87G7fKri04uty94NIbnR9_mfTCtCMaeV-7DjegD4O-ZESM4M-wNYhJix</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864534627</pqid></control><display><type>article</type><title>Nonstationary Hidden Markov Models for Multiaspect Discriminative Feature Extraction From Radar Targets</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Feng ; Zhang, Xian-Da ; Hu, Ya-Feng ; Xie, Deguang</creator><creatorcontrib>Zhu, Feng ; Zhang, Xian-Da ; Hu, Ya-Feng ; Xie, Deguang</creatorcontrib><description>This paper presents a new scheme for radar target recognition, in which we fuse sequential radar echoes from multiple target-radar aspect angles. The nonstationary hidden Markov model (NSHMM) is employed to characterize the sequential information contained in multiaspect radar echoes. Features from echoes are extracted via the multirelax algorithm, and moments are used to reduce the extracted-feature dimensionality. The proposed NSHMM has many parameters and states to be estimated, so the Markov chain Monte Carlo sampling algorithm is adopted. Finally, this new scheme is demonstrated with experiments on inverse synthetic aperture radar data</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2007.892708</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Computer simulation ; Data mining ; Echoes ; Exact sciences and technology ; Feature extraction ; Fuses ; Hidden Markov models ; high-range resolution profile (HRRP) ; Information science ; Information, signal and communications theory ; Inverse synthetic aperture radar ; Markov chain Monte Carlo (MCMC) ; Mathematical models ; Miscellaneous ; Monte Carlo methods ; nonstationary hidden Markov model (NSHMM) ; Radar applications ; Radar echoes ; radar target recognition ; Radar targets ; Sampling ; Sampling, quantization ; Signal and communications theory ; Signal processing ; State estimation ; Target recognition ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2007-05, Vol.55 (5), p.2203-2214</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-681e3b2c091293f707cc662fc6458b72ba25d802213507f3ce5f2d790ef4bc143</citedby><cites>FETCH-LOGICAL-c296t-681e3b2c091293f707cc662fc6458b72ba25d802213507f3ce5f2d790ef4bc143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4156439$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4156439$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18712042$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Zhang, Xian-Da</creatorcontrib><creatorcontrib>Hu, Ya-Feng</creatorcontrib><creatorcontrib>Xie, Deguang</creatorcontrib><title>Nonstationary Hidden Markov Models for Multiaspect Discriminative Feature Extraction From Radar Targets</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper presents a new scheme for radar target recognition, in which we fuse sequential radar echoes from multiple target-radar aspect angles. The nonstationary hidden Markov model (NSHMM) is employed to characterize the sequential information contained in multiaspect radar echoes. Features from echoes are extracted via the multirelax algorithm, and moments are used to reduce the extracted-feature dimensionality. The proposed NSHMM has many parameters and states to be estimated, so the Markov chain Monte Carlo sampling algorithm is adopted. Finally, this new scheme is demonstrated with experiments on inverse synthetic aperture radar data</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Data mining</subject><subject>Echoes</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Fuses</subject><subject>Hidden Markov models</subject><subject>high-range resolution profile (HRRP)</subject><subject>Information science</subject><subject>Information, signal and communications theory</subject><subject>Inverse synthetic aperture radar</subject><subject>Markov chain Monte Carlo (MCMC)</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Monte Carlo methods</subject><subject>nonstationary hidden Markov model (NSHMM)</subject><subject>Radar applications</subject><subject>Radar echoes</subject><subject>radar target recognition</subject><subject>Radar targets</subject><subject>Sampling</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>State estimation</subject><subject>Target recognition</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1LHEEQxQeJoDE5e8ilCcScZu3vj2NQNwZclWQD3prenmoZMzu9dvdI_O_Ty0oCOXiqgvq9R1W9pjkmeEYINqfLH7czirGaaUMV1nvNITGctJgr-ab2WLBWaHV30LzN-QFjwrmRh839dRxzcaWPo0vP6LLvOhjRwqVf8QktYgdDRiEmtJiG0ru8AV_QeZ996tf9WGVPgObgypQAXfwuyfmtE5qnuEbfXecSWrp0DyW_a_aDGzK8f6lHzc_5xfLssr26-frt7MtV66mRpZWaAFtRjw2hhgWFlfdS0uAlF3ql6MpR0WlMKWECq8A8iEA7ZTAEvvKEs6Pm8853k-LjBLnYdd0WhsGNEKdstTZMGSm25MmrJOPaSClwBT_-Bz7EKY31CqvrWoxLqip0uoN8ijknCHZTX1Rfagm223xszcdu87G7fKri04uty94NIbnR9_mfTCtCMaeV-7DjegD4O-ZESM4M-wNYhJix</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Zhu, Feng</creator><creator>Zhang, Xian-Da</creator><creator>Hu, Ya-Feng</creator><creator>Xie, Deguang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>200705</creationdate><title>Nonstationary Hidden Markov Models for Multiaspect Discriminative Feature Extraction From Radar Targets</title><author>Zhu, Feng ; Zhang, Xian-Da ; Hu, Ya-Feng ; Xie, Deguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-681e3b2c091293f707cc662fc6458b72ba25d802213507f3ce5f2d790ef4bc143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Data mining</topic><topic>Echoes</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Fuses</topic><topic>Hidden Markov models</topic><topic>high-range resolution profile (HRRP)</topic><topic>Information science</topic><topic>Information, signal and communications theory</topic><topic>Inverse synthetic aperture radar</topic><topic>Markov chain Monte Carlo (MCMC)</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Monte Carlo methods</topic><topic>nonstationary hidden Markov model (NSHMM)</topic><topic>Radar applications</topic><topic>Radar echoes</topic><topic>radar target recognition</topic><topic>Radar targets</topic><topic>Sampling</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>State estimation</topic><topic>Target recognition</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Zhang, Xian-Da</creatorcontrib><creatorcontrib>Hu, Ya-Feng</creatorcontrib><creatorcontrib>Xie, Deguang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Feng</au><au>Zhang, Xian-Da</au><au>Hu, Ya-Feng</au><au>Xie, Deguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonstationary Hidden Markov Models for Multiaspect Discriminative Feature Extraction From Radar Targets</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2007-05</date><risdate>2007</risdate><volume>55</volume><issue>5</issue><spage>2203</spage><epage>2214</epage><pages>2203-2214</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper presents a new scheme for radar target recognition, in which we fuse sequential radar echoes from multiple target-radar aspect angles. The nonstationary hidden Markov model (NSHMM) is employed to characterize the sequential information contained in multiaspect radar echoes. Features from echoes are extracted via the multirelax algorithm, and moments are used to reduce the extracted-feature dimensionality. The proposed NSHMM has many parameters and states to be estimated, so the Markov chain Monte Carlo sampling algorithm is adopted. Finally, this new scheme is demonstrated with experiments on inverse synthetic aperture radar data</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2007.892708</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2007-05, Vol.55 (5), p.2203-2214
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_18712042
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Computer simulation
Data mining
Echoes
Exact sciences and technology
Feature extraction
Fuses
Hidden Markov models
high-range resolution profile (HRRP)
Information science
Information, signal and communications theory
Inverse synthetic aperture radar
Markov chain Monte Carlo (MCMC)
Mathematical models
Miscellaneous
Monte Carlo methods
nonstationary hidden Markov model (NSHMM)
Radar applications
Radar echoes
radar target recognition
Radar targets
Sampling
Sampling, quantization
Signal and communications theory
Signal processing
State estimation
Target recognition
Telecommunications and information theory
title Nonstationary Hidden Markov Models for Multiaspect Discriminative Feature Extraction From Radar Targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonstationary%20Hidden%20Markov%20Models%20for%20Multiaspect%20Discriminative%20Feature%20Extraction%20From%20Radar%20Targets&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Zhu,%20Feng&rft.date=2007-05&rft.volume=55&rft.issue=5&rft.spage=2203&rft.epage=2214&rft.pages=2203-2214&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2007.892708&rft_dat=%3Cproquest_RIE%3E34896650%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864534627&rft_id=info:pmid/&rft_ieee_id=4156439&rfr_iscdi=true