Nonstationary Hidden Markov Models for Multiaspect Discriminative Feature Extraction From Radar Targets

This paper presents a new scheme for radar target recognition, in which we fuse sequential radar echoes from multiple target-radar aspect angles. The nonstationary hidden Markov model (NSHMM) is employed to characterize the sequential information contained in multiaspect radar echoes. Features from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2007-05, Vol.55 (5), p.2203-2214
Hauptverfasser: Zhu, Feng, Zhang, Xian-Da, Hu, Ya-Feng, Xie, Deguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new scheme for radar target recognition, in which we fuse sequential radar echoes from multiple target-radar aspect angles. The nonstationary hidden Markov model (NSHMM) is employed to characterize the sequential information contained in multiaspect radar echoes. Features from echoes are extracted via the multirelax algorithm, and moments are used to reduce the extracted-feature dimensionality. The proposed NSHMM has many parameters and states to be estimated, so the Markov chain Monte Carlo sampling algorithm is adopted. Finally, this new scheme is demonstrated with experiments on inverse synthetic aperture radar data
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2007.892708