Statistical Analysis of the LMS Algorithm Applied to Super-Resolution Image Reconstruction

Super resolution reconstruction of image sequences is highly dependent on quality of the motion estimation between successive frames. This work presents a statistical analysis of the least mean square (LMS) algorithm applied to super resolution reconstruction of an image sequence with translational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2007-05, Vol.55 (5), p.2084-2095
Hauptverfasser: Costa, G.H., Bermudez, J.C.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Super resolution reconstruction of image sequences is highly dependent on quality of the motion estimation between successive frames. This work presents a statistical analysis of the least mean square (LMS) algorithm applied to super resolution reconstruction of an image sequence with translational global motion. Deterministic recursions are derived for the mean and mean square behaviors of the reconstruction error as functions of the registration errors. The new model describes the behavior of the algorithm in realistic situations, and significantly improves the accuracy of a simple model available in the literature. Monte Carlo simulations show very good agreement between actual and predicted behaviors
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2007.892704