Assessment of human exposure to di-isodecyl phthalate using oxidative metabolites as biomarkers

Abstract Di-isodecyl phthalate (DiDP), primarily used as a plasticiser, is a mixture of isomers with predominantly ten-carbon branched side chains. Assessment of DiDP exposure has not been conducted before because adequate biomarkers were lacking. In 129 adult volunteers with no known exposure to Di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomarkers 2007-03, Vol.12 (2), p.133-144
Hauptverfasser: Silva, M. J., Reidy, J. A., Kato, K., Preau, J. L., Needham, L. L., Calafat, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Di-isodecyl phthalate (DiDP), primarily used as a plasticiser, is a mixture of isomers with predominantly ten-carbon branched side chains. Assessment of DiDP exposure has not been conducted before because adequate biomarkers were lacking. In 129 adult volunteers with no known exposure to DiDP, the urinary concentrations of three oxidative metabolites of DiDP: monocarboxyisononyl phthalate (MCiNP), monooxoisodecyl phthalate (MOiDP) and monohydroxyisodecyl phthalate (MHiDP), previously identified in DiDP-dosed rats, were estimated by solid-phase extraction coupled to high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) using the respective oxidative metabolites of di(2-ethylhexyl)phthalate since authentic standards of the DiDP oxidative metabolites were unavailable. Interestingly, the hydrolytic monoester of DiDP, monoisodecyl phthalate (MiDP), was not detected in any of the samples, while MCiNP, MHiDP and MOiDP were detected in 98%, 96% and 85%, respectively, of the samples tested. MCiNP was excreted predominantly in its free form, whereas MOiDP was excreted as its glucuronide. MCiNP, MHiDP and MOiDP eluted as clusters of multiple peaks from the HPLC column probably due to the presence of numerous structurally similar isomers present in commercial DiDP formulations. The urinary concentrations of these oxidative metabolites correlated significantly (p
ISSN:1354-750X
1366-5804
DOI:10.1080/13547500601066915