Nonlinear Knowledge in Kernel Approximation

Prior knowledge over arbitrary general sets is incorporated into nonlinear kernel approximation problems in the form of linear constraints in a linear program. The key tool in this incorporation is a theorem of the alternative for convex functions that converts nonlinear prior knowledge implications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2007-01, Vol.18 (1), p.300-306
Hauptverfasser: Mangasarian, O.L., Wild, E.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prior knowledge over arbitrary general sets is incorporated into nonlinear kernel approximation problems in the form of linear constraints in a linear program. The key tool in this incorporation is a theorem of the alternative for convex functions that converts nonlinear prior knowledge implications into linear inequalities without the need to kernelize these implications. Effectiveness of the proposed formulation is demonstrated on two synthetic examples and an important lymph node metastasis prediction problem. All these problems exhibit marked improvements upon the introduction of prior knowledge over nonlinear kernel approximation approaches that do not utilize such knowledge
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/TNN.2006.886354