A Nonparametric Approach for Histogram Segmentation

In this work, we propose a method to segment a 1-D histogram without a priori assumptions about the underlying density function. Our approach considers a rigorous definition of an admissible segmentation, avoiding over and under segmentation problems. A fast algorithm leading to such a segmentation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2007-01, Vol.16 (1), p.253-261
Hauptverfasser: Delon, J., Desolneux, A., Lisani, J.-L., Petro, A.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we propose a method to segment a 1-D histogram without a priori assumptions about the underlying density function. Our approach considers a rigorous definition of an admissible segmentation, avoiding over and under segmentation problems. A fast algorithm leading to such a segmentation is proposed. The approach is tested both with synthetic and real data. An application to the segmentation of written documents is also presented. We shall see that this application requires the detection of very small histogram modes, which can be accurately detected with the proposed method
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2006.884951