Pathwise observability through arithmetic progressions and non-pathological sampling
We consider the problem of establishing pathwise observability for a class of switched linear systems with constant, autonomous dynamics, but with switched measurement equations. Using Van der Waerden's theorem, a standard result in Ramsey theory, we give a sufficient condition on the component...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of establishing pathwise observability for a class of switched linear systems with constant, autonomous dynamics, but with switched measurement equations. Using Van der Waerden's theorem, a standard result in Ramsey theory, we give a sufficient condition on the components of the system for it to be pathwise observable. This first result then enables us to extend the KaIman-Bertram criterion, which concerns the conservation of observability after the introduction of sampling, to switched linear systems. We then dualize these results to pathwise controllability. |
---|---|
ISSN: | 0743-1619 2378-5861 |
DOI: | 10.23919/ACC.2004.1384786 |