Achieving the Optimal Diversity-Versus-Multiplexing Tradeoff for MIMO Flat Channels With QAM Space-Time Spreading and DFE Equalization

The use of multiple transmit (Tx) and receive (Rx) antennas allows to transmit multiple signal streams in parallel and hence to increase communication capacity. We have previously introduced simple convolutive linear precoding schemes that spread transmitted symbols in time and space, involving spat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2006-12, Vol.52 (12), p.5312-5323
Hauptverfasser: Medles, A., Slock, D.T.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of multiple transmit (Tx) and receive (Rx) antennas allows to transmit multiple signal streams in parallel and hence to increase communication capacity. We have previously introduced simple convolutive linear precoding schemes that spread transmitted symbols in time and space, involving spatial spreading, delay diversity and possibly temporal spreading. In this paper we show that the use of the classical multiple-input-multiple-output (MIMO) decision feedback equalizer (DFE) (but with joint detection) for this system allows to achieve the optimal diversity-versus-multiplexing tradeoff introduced in Zheng and Tse, "Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels," IEEE Trans. Inf. Theory, May 2003, when a minimum mean squared error (MMSE) design is used. One of the major contributions of this work is the diversity analysis of a MMSE equalizer without the Gaussian approximation. Furthermore, the tradeoff is discussed for an arbitrary number of transmit and receive antennas. We also show the tradeoff obtained for a MMSE zero forcing (ZF) design. So, another originality of this paper is to show that the MIMO optimal tradeoff can be attained with a suboptimal receiver, in this case a DFE, as opposed to optimal maximum likelihood sequence estimation (MLSE)
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2006.885489