The Haar Wavelet Transform in the Time Series Similarity Paradigm

Similarity measures play an important role in many data mining algorithms. To allow the use of such algorithms on non-standard databases, such as databases of financial time series, their similarity measure has to be defined. We present a simple and powerful technique which allows for the rapid eval...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Struzik, Zbigniew R., Siebes, Arno
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Similarity measures play an important role in many data mining algorithms. To allow the use of such algorithms on non-standard databases, such as databases of financial time series, their similarity measure has to be defined. We present a simple and powerful technique which allows for the rapid evaluation of similarity between time series in large data bases. It is based on the orthonormal decomposition of the time series into the Haar basis. We demonstrate that this approach is capable of providing estimates of the local slope of the time series in the sequence of multi-resolution steps. The Haar representation and a number of related represenations derived from it are suitable for direct comparison, e.g. evaluation of the correlation product. We demonstrate that the distance between such representations closely corresponds to the subjective feeling of similarity between the time series. In order to test the validity of subjective criteria, we test the records of currency exchanges, finding convincing levels of correlation.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-48247-5_2