Global Convergence Rates of Nonlinear Diffusion for Time-Varying Images
In this paper, classical nonlinear diffusion methods of ma- chine vision are revisited in the light of recent results in nonlinear sta- bility analysis. Global exponential convergence rates are quantified, and suggest specific choices of nonlinearities and image coupling terms. In particular, global...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, classical nonlinear diffusion methods of ma- chine vision are revisited in the light of recent results in nonlinear sta- bility analysis. Global exponential convergence rates are quantified, and suggest specific choices of nonlinearities and image coupling terms. In particular, global stability and exponential convergence can be guaran- teed for nonlinear filtering of time-varying images. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-48236-9_54 |