Global Convergence Rates of Nonlinear Diffusion for Time-Varying Images

In this paper, classical nonlinear diffusion methods of ma- chine vision are revisited in the light of recent results in nonlinear sta- bility analysis. Global exponential convergence rates are quantified, and suggest specific choices of nonlinearities and image coupling terms. In particular, global...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lohmiller, Winfried, Slotine, Jean-Jacques E.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, classical nonlinear diffusion methods of ma- chine vision are revisited in the light of recent results in nonlinear sta- bility analysis. Global exponential convergence rates are quantified, and suggest specific choices of nonlinearities and image coupling terms. In particular, global stability and exponential convergence can be guaran- teed for nonlinear filtering of time-varying images.
ISSN:0302-9743
1611-3349
DOI:10.1007/3-540-48236-9_54