Signal Power Distribution in the Azimuth, Elevation and Time Delay Domains in Urban Environments for Various Elevations of Base Station Antenna

We investigate signal power distribution in the azimuth-of-arrival, elevation-of-arrival and time-of-arrival domains for various positions of the base station antenna located below the rooftop as well as at rooftop level. This article is based on a multiparametric stochastic model we introduced in 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2006-10, Vol.54 (10), p.2902-2916
Hauptverfasser: Blaunstein, N., Toeltsch, M., Laurila, J., Bonek, E., Katz, D., Vainikainen, P., Tsouri, N., Kalliola, K., Laitinen, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate signal power distribution in the azimuth-of-arrival, elevation-of-arrival and time-of-arrival domains for various positions of the base station antenna located below the rooftop as well as at rooftop level. This article is based on a multiparametric stochastic model we introduced in 2004, as combination of a statistical part, describing an array of buildings randomly distributed at the terrain, and a waveguide model, describing a grid of straight streets with buildings along them. Joint signal power distributions in azimuth-time delay and elevation-azimuth planes are obtained and compared to high-resolution 3-D measurements carried out in downtown Helsinki. A good agreement between theoretical predictions and the measurements is obtained basically, and also regarding the wave-guiding effect and antenna height dependencies. A satisfactory physical explanation, which accounts for the character of the specific building topography, the height and tilt of the antennas, is found. Finally, we present a numerical experiment of changing the base station antenna height, its directivity, and tilt. By this we show that the proposed stochastic approach allows to predict and control a-priori main parameters of smart antenna based only on knowledge of specific features of built-up terrain
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2006.882150