Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random Variables: A Simple Proof
Artstein, Ball, Barthe, and Naor have recently shown that the non-Gaussianness (divergence with respect to a Gaussian random variable with identical first and second moments) of the sum of independent and identically distributed (i.i.d.) random variables is monotonically nonincreasing. We give a sim...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2006-09, Vol.52 (9), p.4295-4297 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4297 |
---|---|
container_issue | 9 |
container_start_page | 4295 |
container_title | IEEE transactions on information theory |
container_volume | 52 |
creator | Tulino, A.M. Verdu, S. |
description | Artstein, Ball, Barthe, and Naor have recently shown that the non-Gaussianness (divergence with respect to a Gaussian random variable with identical first and second moments) of the sum of independent and identically distributed (i.i.d.) random variables is monotonically nonincreasing. We give a simplified proof using the relationship between non-Gaussianness and minimum mean-square error (MMSE) in Gaussian channels. As Artstein , we also deal with the more general setting of nonidentically distributed random variables |
doi_str_mv | 10.1109/TIT.2006.880066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18059422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1683951</ieee_id><sourcerecordid>914654212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-fe1251957bf65872160467d45496a30296d9f326e90d40784b9f3ca31c5ebe4c3</originalsourceid><addsrcrecordid>eNpFkDtPwzAUhS0EEqUwM7B4QUxpbcd2YraqQKlUHqKFNXKcGxGU2MFOBv49iQrqcp_nnOFD6JKSGaVEzXfr3YwRImdpOlR5hCZUiCRSUvBjNCGEppHiPD1FZyF8DSsXlE0QPDnrOmcrg-_AeNABsCtx9wn42dlopfsQKm0thPB_3_bNOK5tAS0MxXb4TdvCNfhD-0rnNYRbvMDbqmlrwK_eufIcnZS6DnDx16fo_eF-t3yMNi-r9XKxiUzM4i4qgTJBlUjyUoo0YVQSLpOCC66kjglTslBlzCQoUnCSpDwfVqNjagTkwE08RTf73Na77x5ClzVVMFDX2oLrQ6YoH3AwygblfK803oXgocxaXzXa_2SUZCPPbOCZjTyzPc_Bcf2XrYPRdem1NVU42FIiFGdj8tVeVwHA4S3TWAka_wIR-XzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914654212</pqid></control><display><type>article</type><title>Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random Variables: A Simple Proof</title><source>IEEE Electronic Library (IEL)</source><creator>Tulino, A.M. ; Verdu, S.</creator><creatorcontrib>Tulino, A.M. ; Verdu, S.</creatorcontrib><description>Artstein, Ball, Barthe, and Naor have recently shown that the non-Gaussianness (divergence with respect to a Gaussian random variable with identical first and second moments) of the sum of independent and identically distributed (i.i.d.) random variables is monotonically nonincreasing. We give a simplified proof using the relationship between non-Gaussianness and minimum mean-square error (MMSE) in Gaussian channels. As Artstein , we also deal with the more general setting of nonidentically distributed random variables</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2006.880066</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Central limit theorem ; Channels ; Convolution ; differential entropy ; Divergence ; Entropy ; entropy power inequality ; Errors ; Exact sciences and technology ; Fasteners ; Functional analysis ; Gaussian ; Gaussian channels ; Information theory ; Information, signal and communications theory ; minimum mean-square error (MMSE) ; non-Gaussianness ; Power measurement ; Proving ; Random variables ; relative entropy ; Signal to noise ratio ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 2006-09, Vol.52 (9), p.4295-4297</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-fe1251957bf65872160467d45496a30296d9f326e90d40784b9f3ca31c5ebe4c3</citedby><cites>FETCH-LOGICAL-c323t-fe1251957bf65872160467d45496a30296d9f326e90d40784b9f3ca31c5ebe4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1683951$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1683951$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18059422$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tulino, A.M.</creatorcontrib><creatorcontrib>Verdu, S.</creatorcontrib><title>Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random Variables: A Simple Proof</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Artstein, Ball, Barthe, and Naor have recently shown that the non-Gaussianness (divergence with respect to a Gaussian random variable with identical first and second moments) of the sum of independent and identically distributed (i.i.d.) random variables is monotonically nonincreasing. We give a simplified proof using the relationship between non-Gaussianness and minimum mean-square error (MMSE) in Gaussian channels. As Artstein , we also deal with the more general setting of nonidentically distributed random variables</description><subject>Applied sciences</subject><subject>Central limit theorem</subject><subject>Channels</subject><subject>Convolution</subject><subject>differential entropy</subject><subject>Divergence</subject><subject>Entropy</subject><subject>entropy power inequality</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Fasteners</subject><subject>Functional analysis</subject><subject>Gaussian</subject><subject>Gaussian channels</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>minimum mean-square error (MMSE)</subject><subject>non-Gaussianness</subject><subject>Power measurement</subject><subject>Proving</subject><subject>Random variables</subject><subject>relative entropy</subject><subject>Signal to noise ratio</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkDtPwzAUhS0EEqUwM7B4QUxpbcd2YraqQKlUHqKFNXKcGxGU2MFOBv49iQrqcp_nnOFD6JKSGaVEzXfr3YwRImdpOlR5hCZUiCRSUvBjNCGEppHiPD1FZyF8DSsXlE0QPDnrOmcrg-_AeNABsCtx9wn42dlopfsQKm0thPB_3_bNOK5tAS0MxXb4TdvCNfhD-0rnNYRbvMDbqmlrwK_eufIcnZS6DnDx16fo_eF-t3yMNi-r9XKxiUzM4i4qgTJBlUjyUoo0YVQSLpOCC66kjglTslBlzCQoUnCSpDwfVqNjagTkwE08RTf73Na77x5ClzVVMFDX2oLrQ6YoH3AwygblfK803oXgocxaXzXa_2SUZCPPbOCZjTyzPc_Bcf2XrYPRdem1NVU42FIiFGdj8tVeVwHA4S3TWAka_wIR-XzQ</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Tulino, A.M.</creator><creator>Verdu, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060901</creationdate><title>Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random Variables: A Simple Proof</title><author>Tulino, A.M. ; Verdu, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-fe1251957bf65872160467d45496a30296d9f326e90d40784b9f3ca31c5ebe4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Central limit theorem</topic><topic>Channels</topic><topic>Convolution</topic><topic>differential entropy</topic><topic>Divergence</topic><topic>Entropy</topic><topic>entropy power inequality</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Fasteners</topic><topic>Functional analysis</topic><topic>Gaussian</topic><topic>Gaussian channels</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>minimum mean-square error (MMSE)</topic><topic>non-Gaussianness</topic><topic>Power measurement</topic><topic>Proving</topic><topic>Random variables</topic><topic>relative entropy</topic><topic>Signal to noise ratio</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tulino, A.M.</creatorcontrib><creatorcontrib>Verdu, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tulino, A.M.</au><au>Verdu, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random Variables: A Simple Proof</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2006-09-01</date><risdate>2006</risdate><volume>52</volume><issue>9</issue><spage>4295</spage><epage>4297</epage><pages>4295-4297</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Artstein, Ball, Barthe, and Naor have recently shown that the non-Gaussianness (divergence with respect to a Gaussian random variable with identical first and second moments) of the sum of independent and identically distributed (i.i.d.) random variables is monotonically nonincreasing. We give a simplified proof using the relationship between non-Gaussianness and minimum mean-square error (MMSE) in Gaussian channels. As Artstein , we also deal with the more general setting of nonidentically distributed random variables</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2006.880066</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2006-09, Vol.52 (9), p.4295-4297 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_pascalfrancis_primary_18059422 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Central limit theorem Channels Convolution differential entropy Divergence Entropy entropy power inequality Errors Exact sciences and technology Fasteners Functional analysis Gaussian Gaussian channels Information theory Information, signal and communications theory minimum mean-square error (MMSE) non-Gaussianness Power measurement Proving Random variables relative entropy Signal to noise ratio Telecommunications and information theory |
title | Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random Variables: A Simple Proof |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotonic%20Decrease%20of%20the%20Non-Gaussianness%20of%20the%20Sum%20of%20Independent%20Random%20Variables:%20A%20Simple%20Proof&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Tulino,%20A.M.&rft.date=2006-09-01&rft.volume=52&rft.issue=9&rft.spage=4295&rft.epage=4297&rft.pages=4295-4297&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2006.880066&rft_dat=%3Cproquest_RIE%3E914654212%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914654212&rft_id=info:pmid/&rft_ieee_id=1683951&rfr_iscdi=true |