Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random Variables: A Simple Proof

Artstein, Ball, Barthe, and Naor have recently shown that the non-Gaussianness (divergence with respect to a Gaussian random variable with identical first and second moments) of the sum of independent and identically distributed (i.i.d.) random variables is monotonically nonincreasing. We give a sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2006-09, Vol.52 (9), p.4295-4297
Hauptverfasser: Tulino, A.M., Verdu, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Artstein, Ball, Barthe, and Naor have recently shown that the non-Gaussianness (divergence with respect to a Gaussian random variable with identical first and second moments) of the sum of independent and identically distributed (i.i.d.) random variables is monotonically nonincreasing. We give a simplified proof using the relationship between non-Gaussianness and minimum mean-square error (MMSE) in Gaussian channels. As Artstein , we also deal with the more general setting of nonidentically distributed random variables
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2006.880066