Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random Variables: A Simple Proof
Artstein, Ball, Barthe, and Naor have recently shown that the non-Gaussianness (divergence with respect to a Gaussian random variable with identical first and second moments) of the sum of independent and identically distributed (i.i.d.) random variables is monotonically nonincreasing. We give a sim...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2006-09, Vol.52 (9), p.4295-4297 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Artstein, Ball, Barthe, and Naor have recently shown that the non-Gaussianness (divergence with respect to a Gaussian random variable with identical first and second moments) of the sum of independent and identically distributed (i.i.d.) random variables is monotonically nonincreasing. We give a simplified proof using the relationship between non-Gaussianness and minimum mean-square error (MMSE) in Gaussian channels. As Artstein , we also deal with the more general setting of nonidentically distributed random variables |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2006.880066 |