Extending into Isometries of K(X,Y)
In this paper we generalize a result of Hopenwasser and Plastiras (1997) that gives a geometric condition under which into isometries from$\mathcal{L}(\ell^{2})$to$\mathcal{L}(\ell^{2})$have a unique extension to an isometry in$\mathcal{L}(\mathcal{L}(\ell^{2}))$. We show that when X and Y are separ...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2006-07, Vol.134 (7), p.2079-2082 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we generalize a result of Hopenwasser and Plastiras (1997) that gives a geometric condition under which into isometries from$\mathcal{L}(\ell^{2})$to$\mathcal{L}(\ell^{2})$have a unique extension to an isometry in$\mathcal{L}(\mathcal{L}(\ell^{2}))$. We show that when X and Y are separable reflexive Banach spaces having the metric approximation property with X strictly convex and Y smooth and such that$\mathcal{K}(X, Y)$is a Hahn-Banach smooth subspace of$\mathcal{L}(X,Y)$, any nice into isometry$\Psi_{0} : \mathcal{K}(X,Y) \rightarrow \mathcal{L}(X, Y)$has a unique extension to an isometry in$\mathcal{L}(\mathcal{L}(X,Y))$. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-06-08178-0 |