Extending into Isometries of K(X,Y)

In this paper we generalize a result of Hopenwasser and Plastiras (1997) that gives a geometric condition under which into isometries from$\mathcal{L}(\ell^{2})$to$\mathcal{L}(\ell^{2})$have a unique extension to an isometry in$\mathcal{L}(\mathcal{L}(\ell^{2}))$. We show that when X and Y are separ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2006-07, Vol.134 (7), p.2079-2082
1. Verfasser: RAO, T. S. S. R. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we generalize a result of Hopenwasser and Plastiras (1997) that gives a geometric condition under which into isometries from$\mathcal{L}(\ell^{2})$to$\mathcal{L}(\ell^{2})$have a unique extension to an isometry in$\mathcal{L}(\mathcal{L}(\ell^{2}))$. We show that when X and Y are separable reflexive Banach spaces having the metric approximation property with X strictly convex and Y smooth and such that$\mathcal{K}(X, Y)$is a Hahn-Banach smooth subspace of$\mathcal{L}(X,Y)$, any nice into isometry$\Psi_{0} : \mathcal{K}(X,Y) \rightarrow \mathcal{L}(X, Y)$has a unique extension to an isometry in$\mathcal{L}(\mathcal{L}(X,Y))$.
ISSN:0002-9939
1088-6826
DOI:10.1090/S0002-9939-06-08178-0