Quench Characteristics of Current Limiting Elements in a Flux-Lock Type Superconducting Fault Current Limiter
We investigated the quench characteristics of a flux-lock type superconducting fault current limiter (SFCL) according to the number of the serial connection between the superconducting elements at the subtractive polarity winding of a transformer. The flux-lock type SFCL consists of two coils. The p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2006-06, Vol.16 (2), p.670-673 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated the quench characteristics of a flux-lock type superconducting fault current limiter (SFCL) according to the number of the serial connection between the superconducting elements at the subtractive polarity winding of a transformer. The flux-lock type SFCL consists of two coils. The primary coil is wound in parallel to the secondary coil through an iron core, and the secondary coil is connected to the superconducting elements in series. The operation of the flux-lock type SFCL can be divided into the subtractive and the additive polarity windings according to the winding directions between the primary and secondary coils. In this paper, the analyses of voltage, current, and resistance in serial connection between superconducting elements were performed to increase the applied voltage of flux-lock type SFCL. The power burden was reduced through the simultaneous quenching between the superconducting elements. This enabled the flux-lock type SFCL to be easy to increase the capacity of power system |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2006.870527 |