On calibration of kullback-leibler divergence via prediction

In this paper we evaluate mean Kullback-Leibler divergence via predicting densities arising from various prediction methods applied to the multivariate single-sample normal model. We demonstrate that the degrees of freedom which index Geisser-Cornfield predictive densities are helpful in divergence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in statistics. Theory and methods 1999-01, Vol.28 (1), p.67-85
Hauptverfasser: Keyes, Tim K., Levy, Martin S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue 1
container_start_page 67
container_title Communications in statistics. Theory and methods
container_volume 28
creator Keyes, Tim K.
Levy, Martin S.
description In this paper we evaluate mean Kullback-Leibler divergence via predicting densities arising from various prediction methods applied to the multivariate single-sample normal model. We demonstrate that the degrees of freedom which index Geisser-Cornfield predictive densities are helpful in divergence calibration. Alternative calibrations are derived based on sample size considerations. An application of each method to univariate prediction from the gamma model is provided. Comparisons are made with a probability-based calibration method.
doi_str_mv 10.1080/03610929908832283
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_1793714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-9e272213e3de3b71bc9557080f1b698d89b000618e047255aa0b22a85cf210e73</originalsourceid><addsrcrecordid>eNqFj01LAzEURYMoWKs_wN0s3I6-lzSTBLqR4hcU3Ci4G5JMIrHpTEnGav-9U6q4KOLqLd45l3sJOUe4RJBwBaxCUFQpkJJRKtkBGSFntJwgfzkko-2_HIDqmJzk_AaAXEg2ItPHtrA6BpN0H7q26HyxeI_RaLsoowsmulQ0Ye3Sq2utK9ZBF6vkmmC39Ck58jpmd_Z9x-T59uZpdl_OH-8eZtfz0jIq-lI5KihF5ljjmBForOJcDK09mkrJRioDABVKBxNBOdcaDKVacuspghNsTHCXa1OXc3K-XqWw1GlTI9Tb-fXe_MG52DkrnYeBPunWhvwrCsUETgZM7LDQ-i4t9UeXYlP3ehO79OPshdf9Zz-Y039N9ne_L1UKfgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On calibration of kullback-leibler divergence via prediction</title><source>Access via Taylor &amp; Francis</source><creator>Keyes, Tim K. ; Levy, Martin S.</creator><creatorcontrib>Keyes, Tim K. ; Levy, Martin S.</creatorcontrib><description>In this paper we evaluate mean Kullback-Leibler divergence via predicting densities arising from various prediction methods applied to the multivariate single-sample normal model. We demonstrate that the degrees of freedom which index Geisser-Cornfield predictive densities are helpful in divergence calibration. Alternative calibrations are derived based on sample size considerations. An application of each method to univariate prediction from the gamma model is provided. Comparisons are made with a probability-based calibration method.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610929908832283</identifier><identifier>CODEN: CSTMDC</identifier><language>eng</language><publisher>Philadelphia, PA: Marcel Dekker, Inc</publisher><subject>Bayesian ; Distribution theory ; estimative ; Exact sciences and technology ; linear models ; Mathematics ; Nonparametric inference ; predicting densities ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Sufficiency and information</subject><ispartof>Communications in statistics. Theory and methods, 1999-01, Vol.28 (1), p.67-85</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1999</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03610929908832283$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03610929908832283$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1793714$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Keyes, Tim K.</creatorcontrib><creatorcontrib>Levy, Martin S.</creatorcontrib><title>On calibration of kullback-leibler divergence via prediction</title><title>Communications in statistics. Theory and methods</title><description>In this paper we evaluate mean Kullback-Leibler divergence via predicting densities arising from various prediction methods applied to the multivariate single-sample normal model. We demonstrate that the degrees of freedom which index Geisser-Cornfield predictive densities are helpful in divergence calibration. Alternative calibrations are derived based on sample size considerations. An application of each method to univariate prediction from the gamma model is provided. Comparisons are made with a probability-based calibration method.</description><subject>Bayesian</subject><subject>Distribution theory</subject><subject>estimative</subject><subject>Exact sciences and technology</subject><subject>linear models</subject><subject>Mathematics</subject><subject>Nonparametric inference</subject><subject>predicting densities</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Sufficiency and information</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFj01LAzEURYMoWKs_wN0s3I6-lzSTBLqR4hcU3Ci4G5JMIrHpTEnGav-9U6q4KOLqLd45l3sJOUe4RJBwBaxCUFQpkJJRKtkBGSFntJwgfzkko-2_HIDqmJzk_AaAXEg2ItPHtrA6BpN0H7q26HyxeI_RaLsoowsmulQ0Ye3Sq2utK9ZBF6vkmmC39Ck58jpmd_Z9x-T59uZpdl_OH-8eZtfz0jIq-lI5KihF5ljjmBForOJcDK09mkrJRioDABVKBxNBOdcaDKVacuspghNsTHCXa1OXc3K-XqWw1GlTI9Tb-fXe_MG52DkrnYeBPunWhvwrCsUETgZM7LDQ-i4t9UeXYlP3ehO79OPshdf9Zz-Y039N9ne_L1UKfgI</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Keyes, Tim K.</creator><creator>Levy, Martin S.</creator><general>Marcel Dekker, Inc</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990101</creationdate><title>On calibration of kullback-leibler divergence via prediction</title><author>Keyes, Tim K. ; Levy, Martin S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-9e272213e3de3b71bc9557080f1b698d89b000618e047255aa0b22a85cf210e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Bayesian</topic><topic>Distribution theory</topic><topic>estimative</topic><topic>Exact sciences and technology</topic><topic>linear models</topic><topic>Mathematics</topic><topic>Nonparametric inference</topic><topic>predicting densities</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Sufficiency and information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keyes, Tim K.</creatorcontrib><creatorcontrib>Levy, Martin S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keyes, Tim K.</au><au>Levy, Martin S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On calibration of kullback-leibler divergence via prediction</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>1999-01-01</date><risdate>1999</risdate><volume>28</volume><issue>1</issue><spage>67</spage><epage>85</epage><pages>67-85</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><coden>CSTMDC</coden><abstract>In this paper we evaluate mean Kullback-Leibler divergence via predicting densities arising from various prediction methods applied to the multivariate single-sample normal model. We demonstrate that the degrees of freedom which index Geisser-Cornfield predictive densities are helpful in divergence calibration. Alternative calibrations are derived based on sample size considerations. An application of each method to univariate prediction from the gamma model is provided. Comparisons are made with a probability-based calibration method.</abstract><cop>Philadelphia, PA</cop><pub>Marcel Dekker, Inc</pub><doi>10.1080/03610929908832283</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-0926
ispartof Communications in statistics. Theory and methods, 1999-01, Vol.28 (1), p.67-85
issn 0361-0926
1532-415X
language eng
recordid cdi_pascalfrancis_primary_1793714
source Access via Taylor & Francis
subjects Bayesian
Distribution theory
estimative
Exact sciences and technology
linear models
Mathematics
Nonparametric inference
predicting densities
Probability and statistics
Sciences and techniques of general use
Statistics
Sufficiency and information
title On calibration of kullback-leibler divergence via prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20calibration%20of%20kullback-leibler%20divergence%20via%20prediction&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Keyes,%20Tim%20K.&rft.date=1999-01-01&rft.volume=28&rft.issue=1&rft.spage=67&rft.epage=85&rft.pages=67-85&rft.issn=0361-0926&rft.eissn=1532-415X&rft.coden=CSTMDC&rft_id=info:doi/10.1080/03610929908832283&rft_dat=%3Cpascalfrancis_cross%3E1793714%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true