On calibration of kullback-leibler divergence via prediction
In this paper we evaluate mean Kullback-Leibler divergence via predicting densities arising from various prediction methods applied to the multivariate single-sample normal model. We demonstrate that the degrees of freedom which index Geisser-Cornfield predictive densities are helpful in divergence...
Gespeichert in:
Veröffentlicht in: | Communications in statistics. Theory and methods 1999-01, Vol.28 (1), p.67-85 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 1 |
container_start_page | 67 |
container_title | Communications in statistics. Theory and methods |
container_volume | 28 |
creator | Keyes, Tim K. Levy, Martin S. |
description | In this paper we evaluate mean Kullback-Leibler divergence via predicting densities arising from various prediction methods applied to the multivariate single-sample normal model. We demonstrate that the degrees of freedom which index Geisser-Cornfield predictive densities are helpful in divergence calibration. Alternative calibrations are derived based on sample size considerations. An application of each method to univariate prediction from the gamma model is provided. Comparisons are made with a probability-based calibration method. |
doi_str_mv | 10.1080/03610929908832283 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_1793714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-9e272213e3de3b71bc9557080f1b698d89b000618e047255aa0b22a85cf210e73</originalsourceid><addsrcrecordid>eNqFj01LAzEURYMoWKs_wN0s3I6-lzSTBLqR4hcU3Ci4G5JMIrHpTEnGav-9U6q4KOLqLd45l3sJOUe4RJBwBaxCUFQpkJJRKtkBGSFntJwgfzkko-2_HIDqmJzk_AaAXEg2ItPHtrA6BpN0H7q26HyxeI_RaLsoowsmulQ0Ye3Sq2utK9ZBF6vkmmC39Ck58jpmd_Z9x-T59uZpdl_OH-8eZtfz0jIq-lI5KihF5ljjmBForOJcDK09mkrJRioDABVKBxNBOdcaDKVacuspghNsTHCXa1OXc3K-XqWw1GlTI9Tb-fXe_MG52DkrnYeBPunWhvwrCsUETgZM7LDQ-i4t9UeXYlP3ehO79OPshdf9Zz-Y039N9ne_L1UKfgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On calibration of kullback-leibler divergence via prediction</title><source>Access via Taylor & Francis</source><creator>Keyes, Tim K. ; Levy, Martin S.</creator><creatorcontrib>Keyes, Tim K. ; Levy, Martin S.</creatorcontrib><description>In this paper we evaluate mean Kullback-Leibler divergence via predicting densities arising from various prediction methods applied to the multivariate single-sample normal model. We demonstrate that the degrees of freedom which index Geisser-Cornfield predictive densities are helpful in divergence calibration. Alternative calibrations are derived based on sample size considerations. An application of each method to univariate prediction from the gamma model is provided. Comparisons are made with a probability-based calibration method.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610929908832283</identifier><identifier>CODEN: CSTMDC</identifier><language>eng</language><publisher>Philadelphia, PA: Marcel Dekker, Inc</publisher><subject>Bayesian ; Distribution theory ; estimative ; Exact sciences and technology ; linear models ; Mathematics ; Nonparametric inference ; predicting densities ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Sufficiency and information</subject><ispartof>Communications in statistics. Theory and methods, 1999-01, Vol.28 (1), p.67-85</ispartof><rights>Copyright Taylor & Francis Group, LLC 1999</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03610929908832283$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03610929908832283$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1793714$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Keyes, Tim K.</creatorcontrib><creatorcontrib>Levy, Martin S.</creatorcontrib><title>On calibration of kullback-leibler divergence via prediction</title><title>Communications in statistics. Theory and methods</title><description>In this paper we evaluate mean Kullback-Leibler divergence via predicting densities arising from various prediction methods applied to the multivariate single-sample normal model. We demonstrate that the degrees of freedom which index Geisser-Cornfield predictive densities are helpful in divergence calibration. Alternative calibrations are derived based on sample size considerations. An application of each method to univariate prediction from the gamma model is provided. Comparisons are made with a probability-based calibration method.</description><subject>Bayesian</subject><subject>Distribution theory</subject><subject>estimative</subject><subject>Exact sciences and technology</subject><subject>linear models</subject><subject>Mathematics</subject><subject>Nonparametric inference</subject><subject>predicting densities</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Sufficiency and information</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFj01LAzEURYMoWKs_wN0s3I6-lzSTBLqR4hcU3Ci4G5JMIrHpTEnGav-9U6q4KOLqLd45l3sJOUe4RJBwBaxCUFQpkJJRKtkBGSFntJwgfzkko-2_HIDqmJzk_AaAXEg2ItPHtrA6BpN0H7q26HyxeI_RaLsoowsmulQ0Ye3Sq2utK9ZBF6vkmmC39Ck58jpmd_Z9x-T59uZpdl_OH-8eZtfz0jIq-lI5KihF5ljjmBForOJcDK09mkrJRioDABVKBxNBOdcaDKVacuspghNsTHCXa1OXc3K-XqWw1GlTI9Tb-fXe_MG52DkrnYeBPunWhvwrCsUETgZM7LDQ-i4t9UeXYlP3ehO79OPshdf9Zz-Y039N9ne_L1UKfgI</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Keyes, Tim K.</creator><creator>Levy, Martin S.</creator><general>Marcel Dekker, Inc</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990101</creationdate><title>On calibration of kullback-leibler divergence via prediction</title><author>Keyes, Tim K. ; Levy, Martin S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-9e272213e3de3b71bc9557080f1b698d89b000618e047255aa0b22a85cf210e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Bayesian</topic><topic>Distribution theory</topic><topic>estimative</topic><topic>Exact sciences and technology</topic><topic>linear models</topic><topic>Mathematics</topic><topic>Nonparametric inference</topic><topic>predicting densities</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Sufficiency and information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keyes, Tim K.</creatorcontrib><creatorcontrib>Levy, Martin S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keyes, Tim K.</au><au>Levy, Martin S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On calibration of kullback-leibler divergence via prediction</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>1999-01-01</date><risdate>1999</risdate><volume>28</volume><issue>1</issue><spage>67</spage><epage>85</epage><pages>67-85</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><coden>CSTMDC</coden><abstract>In this paper we evaluate mean Kullback-Leibler divergence via predicting densities arising from various prediction methods applied to the multivariate single-sample normal model. We demonstrate that the degrees of freedom which index Geisser-Cornfield predictive densities are helpful in divergence calibration. Alternative calibrations are derived based on sample size considerations. An application of each method to univariate prediction from the gamma model is provided. Comparisons are made with a probability-based calibration method.</abstract><cop>Philadelphia, PA</cop><pub>Marcel Dekker, Inc</pub><doi>10.1080/03610929908832283</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0926 |
ispartof | Communications in statistics. Theory and methods, 1999-01, Vol.28 (1), p.67-85 |
issn | 0361-0926 1532-415X |
language | eng |
recordid | cdi_pascalfrancis_primary_1793714 |
source | Access via Taylor & Francis |
subjects | Bayesian Distribution theory estimative Exact sciences and technology linear models Mathematics Nonparametric inference predicting densities Probability and statistics Sciences and techniques of general use Statistics Sufficiency and information |
title | On calibration of kullback-leibler divergence via prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20calibration%20of%20kullback-leibler%20divergence%20via%20prediction&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Keyes,%20Tim%20K.&rft.date=1999-01-01&rft.volume=28&rft.issue=1&rft.spage=67&rft.epage=85&rft.pages=67-85&rft.issn=0361-0926&rft.eissn=1532-415X&rft.coden=CSTMDC&rft_id=info:doi/10.1080/03610929908832283&rft_dat=%3Cpascalfrancis_cross%3E1793714%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |