On calibration of kullback-leibler divergence via prediction
In this paper we evaluate mean Kullback-Leibler divergence via predicting densities arising from various prediction methods applied to the multivariate single-sample normal model. We demonstrate that the degrees of freedom which index Geisser-Cornfield predictive densities are helpful in divergence...
Gespeichert in:
Veröffentlicht in: | Communications in statistics. Theory and methods 1999-01, Vol.28 (1), p.67-85 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we evaluate mean Kullback-Leibler divergence via predicting densities arising from various prediction methods applied to the multivariate single-sample normal model. We demonstrate that the degrees of freedom which index Geisser-Cornfield predictive densities are helpful in divergence calibration. Alternative calibrations are derived based on sample size considerations. An application of each method to univariate prediction from the gamma model is provided. Comparisons are made with a probability-based calibration method. |
---|---|
ISSN: | 0361-0926 1532-415X |
DOI: | 10.1080/03610929908832283 |