Hermite-Gaussian-like eigenvectors of the discrete Fourier transform matrix based on the direct utilization of the orthogonal projection matrices on its eigenspaces

A new version is proposed for the Gram-Schmidt algorithm (GSA), the orthogonal procrustes algorithm (OPA) and the sequential orthogonal procrustes algorithm (SOPA) for generating Hermite-Gaussian-like orthonormal eigenvectors for the discrete Fourier transform matrix F. This version is based on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2006-07, Vol.54 (7), p.2815-2819
Hauptverfasser: Hanna, M.T., Seif, N.P.A., Ahmed, W.A.E.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new version is proposed for the Gram-Schmidt algorithm (GSA), the orthogonal procrustes algorithm (OPA) and the sequential orthogonal procrustes algorithm (SOPA) for generating Hermite-Gaussian-like orthonormal eigenvectors for the discrete Fourier transform matrix F. This version is based on the direct utilization of the orthogonal projection matrices on the eigenspaces of matrix F rather than the singular value decomposition of those matrices for the purpose of generating initial orthonormal eigenvectors. The proposed version of the algorithms has the merit of achieving a significant reduction in the computation time
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2006.873497