Field-emission triode of low-temperature synthesized ZnO nanowires
A field-emission triode based on the low-temperature (75/spl deg/C) and hydrothermally synthesized single-crystalline zinc-oxide nanowires (ZnO NWs) grown on Si substrate with a silicon dioxide (SiO/sub 2/) insulator was fabricated for the controllable field-emission device application. Field-emissi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2006-05, Vol.5 (3), p.216-219 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A field-emission triode based on the low-temperature (75/spl deg/C) and hydrothermally synthesized single-crystalline zinc-oxide nanowires (ZnO NWs) grown on Si substrate with a silicon dioxide (SiO/sub 2/) insulator was fabricated for the controllable field-emission device application. Field-emission measurement reveals that the ZnO NWs fabricated on the Si substrate exhibit a good emission property with the turn-on electric field and threshold electric field (current density of 1 mA/cm/sup 2/) of 1.6 and 2.1 V//spl mu/m, respectively, with a field enhancement factor /spl beta/ of 3340. The field-emission properties of the ZnO NW-based triode exhibit the controllable characteristics. The well-controlled field-emission characteristics can be divided into three parts: gate leakage region, linear region, and saturation region. Therefore, this study provides a low-temperature field-emission triode fabrication process that is compatible with the Si-based microelectronic integration, and the field-emission measurements also reveal that the emission behavior can be well controlled by adopting the triode structure. |
---|---|
ISSN: | 1536-125X 1941-0085 |
DOI: | 10.1109/TNANO.2006.874049 |