Analytical modeling of field-induced interband tunneling-effect transistors and its application
In the room-temperature I-V characteristics of field-induced interband tunneling-effect transistors (FITETs), negative-differential conductance (NDC) characteristics as well as negative-differential transconductance (NDT) characteristics have been observed. The key operation principle of this quantu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2006-05, Vol.5 (3), p.192-200 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the room-temperature I-V characteristics of field-induced interband tunneling-effect transistors (FITETs), negative-differential conductance (NDC) characteristics as well as negative-differential transconductance (NDT) characteristics have been observed. The key operation principle of this quantum-tunneling device is the field-induced interband tunneling. To include the effect of interband tunneling, we have developed an analytical equation of interband tunneling current. Due to the inherent SOI-MOSFET structure of the FITET, the current equation of MOSFET has also been included in the analytical equation of the FITET. By comparing the calculated data from these two current components with the measured data, an additional excess tunneling current component has been introduced in the final analytical equation of the FITET. SPICE simulation results with this analytical model have shown good agreements with the experimental results. Also, this analytical model has been applied to verify the functionality of a simple digital logic gate such as XOR and four-level parity checker made by one FITET. |
---|---|
ISSN: | 1536-125X 1941-0085 |
DOI: | 10.1109/TNANO.2006.869950 |