Exact Pareto-optimal coordination of two translating polygonal robots on an acyclic roadmap
We present an algorithm that computes the complete set of Pareto-optimal coordination strategies for two translating polygonal robots in the plane. A collision-free acyclic roadmap of piecewise-linear paths is given on which the two robots move. The robots have a maximum speed and are capable of ins...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an algorithm that computes the complete set of Pareto-optimal coordination strategies for two translating polygonal robots in the plane. A collision-free acyclic roadmap of piecewise-linear paths is given on which the two robots move. The robots have a maximum speed and are capable of instantly switching between any two arbitrary speeds. Each robot would like to minimize its travel time independently. The Pareto-optimal solutions are the ones for which there exist no solutions that are better for both robots. The algorithm computes exact solutions in time O(mn/sup 2/ log n), in which m is the number of paths in the roadmap, n is the number of coordination space vertices. An implementation is presented. |
---|---|
ISSN: | 1050-4729 2577-087X |
DOI: | 10.1109/ROBOT.2004.1308892 |