Enveloping multi-pocket obstacles with hexagonal metamorphic robots

The problem addressed is reconfiguration planning for a metamorphic robotic system composed of any number of hexagonal robots when a single obstacle with multiple indentations or "pockets" is embedded in the goal environment. We extend our earlier work on filling a single pocket in an obst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Walter, J.E., Brooks, M.E., Little, D.F., Amato, N.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem addressed is reconfiguration planning for a metamorphic robotic system composed of any number of hexagonal robots when a single obstacle with multiple indentations or "pockets" is embedded in the goal environment. We extend our earlier work on filling a single pocket in an obstacle to the case where the obstacle surface may contain multiple pockets. The planning phase of our algorithm first determines whether the obstacle pockets provide sufficient clearance for module movement, i.e., whether the obstacle is "admissible". In this paper, we present algorithms that sequentially order individual pockets and order module placement inside each pocket. These algorithms ensure that every cell in each pocket is filled and that module deadlock and collision do not occur during reconfiguration. This paper also provides a complete overview of the planning stage that is executed prior to reconfiguration and presents a distributed reconfiguration schema for filling more than one obstacle pocket concurrently, followed by the envelopment of the entire obstacle. Lastly, we present examples of obstacles with multiple pockets that were successfully filled using our distributed reconfiguration simulator.
ISSN:1050-4729
2577-087X
DOI:10.1109/ROBOT.2004.1307389