A fast wavelet-based moment method for solving thin-wire EFIE
Solving the thin-wire electric field integral equation (EFIE) by the multiresolution wavelet expansion method involves a time-consuming double numerical integration for each nonzero element of the moment matrix which in turn can outweigh the advantages of achieving a sparse matrix. To speed up the m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2006-04, Vol.42 (4), p.575-578 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solving the thin-wire electric field integral equation (EFIE) by the multiresolution wavelet expansion method involves a time-consuming double numerical integration for each nonzero element of the moment matrix which in turn can outweigh the advantages of achieving a sparse matrix. To speed up the matrix fill process in wavelet-based moment method codes, first, the triangular scaling functions of a nonorthogonal piecewise liner wavelet at the finest spatial resolution are appropriately replaced by sinusoidal dipoles for which mutual impedances are available in closed-form analytical expressions. The fast wavelet bases transform is then exploited to effectively transfer the resultant matrix equation to multiresolution wavelet domain. Numerical results obtained by the compactly supported semi-orthogonal linear B-spline wavelet demonstrate dramatic reduction of the overall solution time without any degradation in the accuracy of the final solution |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2006.872020 |