Convergence Analysis of Wavelet Schemes for Convection-Reaction Equations under Minimal Regularity Assumptions
In this paper, we analyze convergence rates of wavelet schemes for time-dependent convection-reaction equations within the framework of the Eulerian-Lagrangian localized adjoint method (ELLAM). Under certain minimal assumptions that guarantee$H^{1}-regularity$of exact solutions, we show that a gener...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2006-01, Vol.43 (2), p.521-539 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we analyze convergence rates of wavelet schemes for time-dependent convection-reaction equations within the framework of the Eulerian-Lagrangian localized adjoint method (ELLAM). Under certain minimal assumptions that guarantee$H^{1}-regularity$of exact solutions, we show that a generic ELLAM scheme has a convergence rate$\mathcal{O}(h/\sqrt{\Delta t} + \Delta t)$in$L^{2}-norm$. Then, applying the theory of operator interpolation, we obtain error estimates for initial data with even lower regularity. Namely, it is shown that the error of such a scheme is$\mathcal{O}((h/\sqrt{\Delta t})^{\theta} + (\Delta t)^{theta})$for initial data in a Besov space $B_{2,q}^{\theta}(0 < \theta < l, 0 < q \leq \infty)$. The error estimates are a priori and optimal in some cases. Numerical experiments using orthogonal wavelets are presented to illustrate the theoretical estimates. |
---|---|
ISSN: | 0036-1429 1095-7170 |