A bayesian network approach to traffic flow forecasting

A new approach based on Bayesian networks for traffic flow forecasting is proposed. In this paper, traffic flows among adjacent road links in a transportation network are modeled as a Bayesian network. The joint probability distribution between the cause nodes (data utilized for forecasting) and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2006-03, Vol.7 (1), p.124-132
Hauptverfasser: Sun, S., Zhang, C., Yu, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new approach based on Bayesian networks for traffic flow forecasting is proposed. In this paper, traffic flows among adjacent road links in a transportation network are modeled as a Bayesian network. The joint probability distribution between the cause nodes (data utilized for forecasting) and the effect node (data to be forecasted) in a constructed Bayesian network is described as a Gaussian mixture model (GMM) whose parameters are estimated via the competitive expectation maximization (CEM) algorithm. Finally, traffic flow forecasting is performed under the criterion of minimum mean square error (mmse). The approach departs from many existing traffic flow forecasting models in that it explicitly includes information from adjacent road links to analyze the trends of the current link statistically. Furthermore, it also encompasses the issue of traffic flow forecasting when incomplete data exist. Comprehensive experiments on urban vehicular traffic flow data of Beijing and comparisons with several other methods show that the Bayesian network is a very promising and effective approach for traffic flow modeling and forecasting, both for complete data and incomplete data
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2006.869623