Queues with Dependency Between Interarrival and Service Times Using Mixtures of Bivariates
We analyze queueing models where the joint density of the interarrival time and the service time is described by a mixture of joint densities. These models occur naturally in multiclass populations serviced by a single server through a single queue. Other motivations for this model are to model the...
Gespeichert in:
Veröffentlicht in: | Stochastic models 2006-05, Vol.22 (1), p.3-20 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | Stochastic models |
container_volume | 22 |
creator | Iyer, Srikanth K. Manjunath, D. |
description | We analyze queueing models where the joint density of the interarrival time and the service time is described by a mixture of joint densities. These models occur naturally in multiclass populations serviced by a single server through a single queue. Other motivations for this model are to model the dependency between the interarrival and service times and consider queue control models. Performance models with component heavy tailed distributions that arise in communication networks are difficult to analyze. However, long tailed distributions can be approximated using a finite mixture of exponentials. Thus, the models analyzed here provide a tool for the study of performance models with heavy tailed distributions. The joint density of A and X, the interarrival and service times respectively, f(a,x), will be of the form
where p
i
> 0 and
. We derive the Laplace Stieltjes Transform of the waiting time distribution. We also present and discuss some numerical examples to describe the effect of the various parameters of the model. |
doi_str_mv | 10.1080/15326340500294561 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_17532252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17532252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-347d55397dbfead6f9b7ea3603902edc3d745f378736a7c1967b07394b88d1f23</originalsourceid><addsrcrecordid>eNqF0MtKAzEUBuAgCtbqA7jLxuVoMplMZsCN9VqoiNhu3AyZ5EQj00xJ0tvbO6UVF0Vc5cL__RwOQueUXFJSkCvKWZqzjHBC0jLjOT1Avc1fkqU0O9zdu0B5jE5C-CKEclEUPfT-Ooc5BLy08RPfwQycBqfWeABxCeDw0EXw0nu7kA2WTuM38AurAI_ttGOTYN0HfrarOPfdszV40CW9lRHCKToysglwtjv7aPJwP759SkYvj8Pbm1GiGMljwjKhOWel0LUBqXNT1gIkywkrSQpaMS0ybpgoBMulULTMRU0EK7O6KDQ1Kesjuu1Vvg3Bg6lm3k6lX1eUVJvlVHvL6czF1sxkULIxXjplwy8UnUj5pltsc9aZ1k_lsvWNrqJcN63_QXvtVVzFTl7_K9nfA34DgkuJig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Queues with Dependency Between Interarrival and Service Times Using Mixtures of Bivariates</title><source>Business Source Complete</source><creator>Iyer, Srikanth K. ; Manjunath, D.</creator><creatorcontrib>Iyer, Srikanth K. ; Manjunath, D.</creatorcontrib><description>We analyze queueing models where the joint density of the interarrival time and the service time is described by a mixture of joint densities. These models occur naturally in multiclass populations serviced by a single server through a single queue. Other motivations for this model are to model the dependency between the interarrival and service times and consider queue control models. Performance models with component heavy tailed distributions that arise in communication networks are difficult to analyze. However, long tailed distributions can be approximated using a finite mixture of exponentials. Thus, the models analyzed here provide a tool for the study of performance models with heavy tailed distributions. The joint density of A and X, the interarrival and service times respectively, f(a,x), will be of the form
where p
i
> 0 and
. We derive the Laplace Stieltjes Transform of the waiting time distribution. We also present and discuss some numerical examples to describe the effect of the various parameters of the model.</description><identifier>ISSN: 1532-6349</identifier><identifier>EISSN: 1532-4214</identifier><identifier>DOI: 10.1080/15326340500294561</identifier><identifier>CODEN: SMTOBE</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor & Francis Group</publisher><subject>Applied sciences ; Bivariate random variables ; Computer science; control theory; systems ; Computer systems performance. Reliability ; Correlation ; Exact sciences and technology ; Laplace transform ; Mathematics ; Multivariate analysis ; Operational research and scientific management ; Operational research. Management science ; Primary 60K20, 90B22 ; Probability and statistics ; Probability theory and stochastic processes ; Queues ; Queuing theory. Traffic theory ; Sciences and techniques of general use ; Secondary 68M20, 62E10, 62H05 ; Software ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Statistics ; Waiting time distribution</subject><ispartof>Stochastic models, 2006-05, Vol.22 (1), p.3-20</ispartof><rights>Copyright Taylor & Francis Group, LLC 2006</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-347d55397dbfead6f9b7ea3603902edc3d745f378736a7c1967b07394b88d1f23</citedby><cites>FETCH-LOGICAL-c306t-347d55397dbfead6f9b7ea3603902edc3d745f378736a7c1967b07394b88d1f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17532252$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Iyer, Srikanth K.</creatorcontrib><creatorcontrib>Manjunath, D.</creatorcontrib><title>Queues with Dependency Between Interarrival and Service Times Using Mixtures of Bivariates</title><title>Stochastic models</title><description>We analyze queueing models where the joint density of the interarrival time and the service time is described by a mixture of joint densities. These models occur naturally in multiclass populations serviced by a single server through a single queue. Other motivations for this model are to model the dependency between the interarrival and service times and consider queue control models. Performance models with component heavy tailed distributions that arise in communication networks are difficult to analyze. However, long tailed distributions can be approximated using a finite mixture of exponentials. Thus, the models analyzed here provide a tool for the study of performance models with heavy tailed distributions. The joint density of A and X, the interarrival and service times respectively, f(a,x), will be of the form
where p
i
> 0 and
. We derive the Laplace Stieltjes Transform of the waiting time distribution. We also present and discuss some numerical examples to describe the effect of the various parameters of the model.</description><subject>Applied sciences</subject><subject>Bivariate random variables</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems performance. Reliability</subject><subject>Correlation</subject><subject>Exact sciences and technology</subject><subject>Laplace transform</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Primary 60K20, 90B22</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Queues</subject><subject>Queuing theory. Traffic theory</subject><subject>Sciences and techniques of general use</subject><subject>Secondary 68M20, 62E10, 62H05</subject><subject>Software</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Statistics</subject><subject>Waiting time distribution</subject><issn>1532-6349</issn><issn>1532-4214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0MtKAzEUBuAgCtbqA7jLxuVoMplMZsCN9VqoiNhu3AyZ5EQj00xJ0tvbO6UVF0Vc5cL__RwOQueUXFJSkCvKWZqzjHBC0jLjOT1Avc1fkqU0O9zdu0B5jE5C-CKEclEUPfT-Ooc5BLy08RPfwQycBqfWeABxCeDw0EXw0nu7kA2WTuM38AurAI_ttGOTYN0HfrarOPfdszV40CW9lRHCKToysglwtjv7aPJwP759SkYvj8Pbm1GiGMljwjKhOWel0LUBqXNT1gIkywkrSQpaMS0ybpgoBMulULTMRU0EK7O6KDQ1Kesjuu1Vvg3Bg6lm3k6lX1eUVJvlVHvL6czF1sxkULIxXjplwy8UnUj5pltsc9aZ1k_lsvWNrqJcN63_QXvtVVzFTl7_K9nfA34DgkuJig</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Iyer, Srikanth K.</creator><creator>Manjunath, D.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060501</creationdate><title>Queues with Dependency Between Interarrival and Service Times Using Mixtures of Bivariates</title><author>Iyer, Srikanth K. ; Manjunath, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-347d55397dbfead6f9b7ea3603902edc3d745f378736a7c1967b07394b88d1f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Bivariate random variables</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems performance. Reliability</topic><topic>Correlation</topic><topic>Exact sciences and technology</topic><topic>Laplace transform</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Primary 60K20, 90B22</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Queues</topic><topic>Queuing theory. Traffic theory</topic><topic>Sciences and techniques of general use</topic><topic>Secondary 68M20, 62E10, 62H05</topic><topic>Software</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Statistics</topic><topic>Waiting time distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iyer, Srikanth K.</creatorcontrib><creatorcontrib>Manjunath, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Stochastic models</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iyer, Srikanth K.</au><au>Manjunath, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Queues with Dependency Between Interarrival and Service Times Using Mixtures of Bivariates</atitle><jtitle>Stochastic models</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>22</volume><issue>1</issue><spage>3</spage><epage>20</epage><pages>3-20</pages><issn>1532-6349</issn><eissn>1532-4214</eissn><coden>SMTOBE</coden><abstract>We analyze queueing models where the joint density of the interarrival time and the service time is described by a mixture of joint densities. These models occur naturally in multiclass populations serviced by a single server through a single queue. Other motivations for this model are to model the dependency between the interarrival and service times and consider queue control models. Performance models with component heavy tailed distributions that arise in communication networks are difficult to analyze. However, long tailed distributions can be approximated using a finite mixture of exponentials. Thus, the models analyzed here provide a tool for the study of performance models with heavy tailed distributions. The joint density of A and X, the interarrival and service times respectively, f(a,x), will be of the form
where p
i
> 0 and
. We derive the Laplace Stieltjes Transform of the waiting time distribution. We also present and discuss some numerical examples to describe the effect of the various parameters of the model.</abstract><cop>Philadelphia, PA</cop><pub>Taylor & Francis Group</pub><doi>10.1080/15326340500294561</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-6349 |
ispartof | Stochastic models, 2006-05, Vol.22 (1), p.3-20 |
issn | 1532-6349 1532-4214 |
language | eng |
recordid | cdi_pascalfrancis_primary_17532252 |
source | Business Source Complete |
subjects | Applied sciences Bivariate random variables Computer science control theory systems Computer systems performance. Reliability Correlation Exact sciences and technology Laplace transform Mathematics Multivariate analysis Operational research and scientific management Operational research. Management science Primary 60K20, 90B22 Probability and statistics Probability theory and stochastic processes Queues Queuing theory. Traffic theory Sciences and techniques of general use Secondary 68M20, 62E10, 62H05 Software Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) Statistics Waiting time distribution |
title | Queues with Dependency Between Interarrival and Service Times Using Mixtures of Bivariates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Queues%20with%20Dependency%20Between%20Interarrival%20and%20Service%20Times%20Using%20Mixtures%20of%20Bivariates&rft.jtitle=Stochastic%20models&rft.au=Iyer,%20Srikanth%20K.&rft.date=2006-05-01&rft.volume=22&rft.issue=1&rft.spage=3&rft.epage=20&rft.pages=3-20&rft.issn=1532-6349&rft.eissn=1532-4214&rft.coden=SMTOBE&rft_id=info:doi/10.1080/15326340500294561&rft_dat=%3Cpascalfrancis_cross%3E17532252%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |