Queues with Dependency Between Interarrival and Service Times Using Mixtures of Bivariates

We analyze queueing models where the joint density of the interarrival time and the service time is described by a mixture of joint densities. These models occur naturally in multiclass populations serviced by a single server through a single queue. Other motivations for this model are to model the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic models 2006-05, Vol.22 (1), p.3-20
Hauptverfasser: Iyer, Srikanth K., Manjunath, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 3
container_title Stochastic models
container_volume 22
creator Iyer, Srikanth K.
Manjunath, D.
description We analyze queueing models where the joint density of the interarrival time and the service time is described by a mixture of joint densities. These models occur naturally in multiclass populations serviced by a single server through a single queue. Other motivations for this model are to model the dependency between the interarrival and service times and consider queue control models. Performance models with component heavy tailed distributions that arise in communication networks are difficult to analyze. However, long tailed distributions can be approximated using a finite mixture of exponentials. Thus, the models analyzed here provide a tool for the study of performance models with heavy tailed distributions. The joint density of A and X, the interarrival and service times respectively, f(a,x), will be of the form where p i  > 0 and . We derive the Laplace Stieltjes Transform of the waiting time distribution. We also present and discuss some numerical examples to describe the effect of the various parameters of the model.
doi_str_mv 10.1080/15326340500294561
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_17532252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17532252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-347d55397dbfead6f9b7ea3603902edc3d745f378736a7c1967b07394b88d1f23</originalsourceid><addsrcrecordid>eNqF0MtKAzEUBuAgCtbqA7jLxuVoMplMZsCN9VqoiNhu3AyZ5EQj00xJ0tvbO6UVF0Vc5cL__RwOQueUXFJSkCvKWZqzjHBC0jLjOT1Avc1fkqU0O9zdu0B5jE5C-CKEclEUPfT-Ooc5BLy08RPfwQycBqfWeABxCeDw0EXw0nu7kA2WTuM38AurAI_ttGOTYN0HfrarOPfdszV40CW9lRHCKToysglwtjv7aPJwP759SkYvj8Pbm1GiGMljwjKhOWel0LUBqXNT1gIkywkrSQpaMS0ybpgoBMulULTMRU0EK7O6KDQ1Kesjuu1Vvg3Bg6lm3k6lX1eUVJvlVHvL6czF1sxkULIxXjplwy8UnUj5pltsc9aZ1k_lsvWNrqJcN63_QXvtVVzFTl7_K9nfA34DgkuJig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Queues with Dependency Between Interarrival and Service Times Using Mixtures of Bivariates</title><source>Business Source Complete</source><creator>Iyer, Srikanth K. ; Manjunath, D.</creator><creatorcontrib>Iyer, Srikanth K. ; Manjunath, D.</creatorcontrib><description>We analyze queueing models where the joint density of the interarrival time and the service time is described by a mixture of joint densities. These models occur naturally in multiclass populations serviced by a single server through a single queue. Other motivations for this model are to model the dependency between the interarrival and service times and consider queue control models. Performance models with component heavy tailed distributions that arise in communication networks are difficult to analyze. However, long tailed distributions can be approximated using a finite mixture of exponentials. Thus, the models analyzed here provide a tool for the study of performance models with heavy tailed distributions. The joint density of A and X, the interarrival and service times respectively, f(a,x), will be of the form where p i  &gt; 0 and . We derive the Laplace Stieltjes Transform of the waiting time distribution. We also present and discuss some numerical examples to describe the effect of the various parameters of the model.</description><identifier>ISSN: 1532-6349</identifier><identifier>EISSN: 1532-4214</identifier><identifier>DOI: 10.1080/15326340500294561</identifier><identifier>CODEN: SMTOBE</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Bivariate random variables ; Computer science; control theory; systems ; Computer systems performance. Reliability ; Correlation ; Exact sciences and technology ; Laplace transform ; Mathematics ; Multivariate analysis ; Operational research and scientific management ; Operational research. Management science ; Primary 60K20, 90B22 ; Probability and statistics ; Probability theory and stochastic processes ; Queues ; Queuing theory. Traffic theory ; Sciences and techniques of general use ; Secondary 68M20, 62E10, 62H05 ; Software ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Statistics ; Waiting time distribution</subject><ispartof>Stochastic models, 2006-05, Vol.22 (1), p.3-20</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2006</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-347d55397dbfead6f9b7ea3603902edc3d745f378736a7c1967b07394b88d1f23</citedby><cites>FETCH-LOGICAL-c306t-347d55397dbfead6f9b7ea3603902edc3d745f378736a7c1967b07394b88d1f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17532252$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Iyer, Srikanth K.</creatorcontrib><creatorcontrib>Manjunath, D.</creatorcontrib><title>Queues with Dependency Between Interarrival and Service Times Using Mixtures of Bivariates</title><title>Stochastic models</title><description>We analyze queueing models where the joint density of the interarrival time and the service time is described by a mixture of joint densities. These models occur naturally in multiclass populations serviced by a single server through a single queue. Other motivations for this model are to model the dependency between the interarrival and service times and consider queue control models. Performance models with component heavy tailed distributions that arise in communication networks are difficult to analyze. However, long tailed distributions can be approximated using a finite mixture of exponentials. Thus, the models analyzed here provide a tool for the study of performance models with heavy tailed distributions. The joint density of A and X, the interarrival and service times respectively, f(a,x), will be of the form where p i  &gt; 0 and . We derive the Laplace Stieltjes Transform of the waiting time distribution. We also present and discuss some numerical examples to describe the effect of the various parameters of the model.</description><subject>Applied sciences</subject><subject>Bivariate random variables</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems performance. Reliability</subject><subject>Correlation</subject><subject>Exact sciences and technology</subject><subject>Laplace transform</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Primary 60K20, 90B22</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Queues</subject><subject>Queuing theory. Traffic theory</subject><subject>Sciences and techniques of general use</subject><subject>Secondary 68M20, 62E10, 62H05</subject><subject>Software</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Statistics</subject><subject>Waiting time distribution</subject><issn>1532-6349</issn><issn>1532-4214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0MtKAzEUBuAgCtbqA7jLxuVoMplMZsCN9VqoiNhu3AyZ5EQj00xJ0tvbO6UVF0Vc5cL__RwOQueUXFJSkCvKWZqzjHBC0jLjOT1Avc1fkqU0O9zdu0B5jE5C-CKEclEUPfT-Ooc5BLy08RPfwQycBqfWeABxCeDw0EXw0nu7kA2WTuM38AurAI_ttGOTYN0HfrarOPfdszV40CW9lRHCKToysglwtjv7aPJwP759SkYvj8Pbm1GiGMljwjKhOWel0LUBqXNT1gIkywkrSQpaMS0ybpgoBMulULTMRU0EK7O6KDQ1Kesjuu1Vvg3Bg6lm3k6lX1eUVJvlVHvL6czF1sxkULIxXjplwy8UnUj5pltsc9aZ1k_lsvWNrqJcN63_QXvtVVzFTl7_K9nfA34DgkuJig</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Iyer, Srikanth K.</creator><creator>Manjunath, D.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060501</creationdate><title>Queues with Dependency Between Interarrival and Service Times Using Mixtures of Bivariates</title><author>Iyer, Srikanth K. ; Manjunath, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-347d55397dbfead6f9b7ea3603902edc3d745f378736a7c1967b07394b88d1f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Bivariate random variables</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems performance. Reliability</topic><topic>Correlation</topic><topic>Exact sciences and technology</topic><topic>Laplace transform</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Primary 60K20, 90B22</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Queues</topic><topic>Queuing theory. Traffic theory</topic><topic>Sciences and techniques of general use</topic><topic>Secondary 68M20, 62E10, 62H05</topic><topic>Software</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Statistics</topic><topic>Waiting time distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iyer, Srikanth K.</creatorcontrib><creatorcontrib>Manjunath, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Stochastic models</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iyer, Srikanth K.</au><au>Manjunath, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Queues with Dependency Between Interarrival and Service Times Using Mixtures of Bivariates</atitle><jtitle>Stochastic models</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>22</volume><issue>1</issue><spage>3</spage><epage>20</epage><pages>3-20</pages><issn>1532-6349</issn><eissn>1532-4214</eissn><coden>SMTOBE</coden><abstract>We analyze queueing models where the joint density of the interarrival time and the service time is described by a mixture of joint densities. These models occur naturally in multiclass populations serviced by a single server through a single queue. Other motivations for this model are to model the dependency between the interarrival and service times and consider queue control models. Performance models with component heavy tailed distributions that arise in communication networks are difficult to analyze. However, long tailed distributions can be approximated using a finite mixture of exponentials. Thus, the models analyzed here provide a tool for the study of performance models with heavy tailed distributions. The joint density of A and X, the interarrival and service times respectively, f(a,x), will be of the form where p i  &gt; 0 and . We derive the Laplace Stieltjes Transform of the waiting time distribution. We also present and discuss some numerical examples to describe the effect of the various parameters of the model.</abstract><cop>Philadelphia, PA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/15326340500294561</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1532-6349
ispartof Stochastic models, 2006-05, Vol.22 (1), p.3-20
issn 1532-6349
1532-4214
language eng
recordid cdi_pascalfrancis_primary_17532252
source Business Source Complete
subjects Applied sciences
Bivariate random variables
Computer science
control theory
systems
Computer systems performance. Reliability
Correlation
Exact sciences and technology
Laplace transform
Mathematics
Multivariate analysis
Operational research and scientific management
Operational research. Management science
Primary 60K20, 90B22
Probability and statistics
Probability theory and stochastic processes
Queues
Queuing theory. Traffic theory
Sciences and techniques of general use
Secondary 68M20, 62E10, 62H05
Software
Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)
Statistics
Waiting time distribution
title Queues with Dependency Between Interarrival and Service Times Using Mixtures of Bivariates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Queues%20with%20Dependency%20Between%20Interarrival%20and%20Service%20Times%20Using%20Mixtures%20of%20Bivariates&rft.jtitle=Stochastic%20models&rft.au=Iyer,%20Srikanth%20K.&rft.date=2006-05-01&rft.volume=22&rft.issue=1&rft.spage=3&rft.epage=20&rft.pages=3-20&rft.issn=1532-6349&rft.eissn=1532-4214&rft.coden=SMTOBE&rft_id=info:doi/10.1080/15326340500294561&rft_dat=%3Cpascalfrancis_cross%3E17532252%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true