Queues with Dependency Between Interarrival and Service Times Using Mixtures of Bivariates

We analyze queueing models where the joint density of the interarrival time and the service time is described by a mixture of joint densities. These models occur naturally in multiclass populations serviced by a single server through a single queue. Other motivations for this model are to model the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic models 2006-05, Vol.22 (1), p.3-20
Hauptverfasser: Iyer, Srikanth K., Manjunath, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze queueing models where the joint density of the interarrival time and the service time is described by a mixture of joint densities. These models occur naturally in multiclass populations serviced by a single server through a single queue. Other motivations for this model are to model the dependency between the interarrival and service times and consider queue control models. Performance models with component heavy tailed distributions that arise in communication networks are difficult to analyze. However, long tailed distributions can be approximated using a finite mixture of exponentials. Thus, the models analyzed here provide a tool for the study of performance models with heavy tailed distributions. The joint density of A and X, the interarrival and service times respectively, f(a,x), will be of the form where p i  > 0 and . We derive the Laplace Stieltjes Transform of the waiting time distribution. We also present and discuss some numerical examples to describe the effect of the various parameters of the model.
ISSN:1532-6349
1532-4214
DOI:10.1080/15326340500294561