A Technique to Reduce Preemption Overhead in Real-Time Multiprocessor Task Scheduling
Partitioning and global scheduling are two approaches for scheduling real-time tasks in multiprocessor environments. Partitioning is the more favored approach, although it is sub-optimal. This is mainly due to the fact that popular uniprocessor real-time scheduling algorithms, such as EDF and RM, ca...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Partitioning and global scheduling are two approaches for scheduling real-time tasks in multiprocessor environments. Partitioning is the more favored approach, although it is sub-optimal. This is mainly due to the fact that popular uniprocessor real-time scheduling algorithms, such as EDF and RM, can be applied to the partitioning approach with low scheduling overhead. In recent years, much research has been done on global real-time multiprocessor scheduling algorithms based on the concept of “proportionate fairness”. Proportionate fair (Pfair) scheduling [5],[6] is the only known optimal algorithm for scheduling real-time tasks on multiprocessor. However, frequent preemptions caused by the small quantum length for providing optimal scheduling in the Pfair scheduling make it impractical. Deadline Fair Scheduling (DFS) [1] based on Pfair scheduling tried to reduce preemption-related overhead by means of extending quantum length and sharing a quantum among tasks. But extending quantum length causes a mis-estimation problem for eligibility of tasks and a non-work-conserving problem.
In this paper, we propose the Enhanced Deadline Fair Scheduling (E-DFS) algorithm to reduce preemption-related overhead. We show that E-DFS allows us to decrease quantum length by reducing overhead and save wasted CPU time that is caused by preemption-related overhead and miss-estimation of eligibility. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11572961_46 |