In Use Parameter Estimation of Inertial Sensors by Detecting Multilevel Quasi-static States

We present an autoadaptive algorithm for in-use parameter estimation of MEMS inertial accelerometers and gyros using multi-level quasi-static states for greater accuracy and reliability. Multi-level quasi-static states are detected robustly using data from both gyros and accelerometers. Proper estim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Saxena, Ashutosh, Gupta, Gaurav, Gerasimov, Vadim, Ourselin, Sébastien
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an autoadaptive algorithm for in-use parameter estimation of MEMS inertial accelerometers and gyros using multi-level quasi-static states for greater accuracy and reliability. Multi-level quasi-static states are detected robustly using data from both gyros and accelerometers. Proper estimation of time-varying sensor parameters allows us to develop a mixed-reality real-time hand-held orientation tracker with dynamic accuracy of less than 20. Existing methods like Kalman filters do not take time-varying nature of parameters into account, instead modelling the time-variation as higher values in noise covariance matrices; thus underestimating the sensor capabilities.
ISSN:0302-9743
1611-3349
DOI:10.1007/11554028_82