An experiment with association rules and classification: post-bagging and conviction

In this paper we study a new technique we call post-bagging, which consists in resampling parts of a classification model rather then the data. We do this with a particular kind of model: large sets of classification association rules, and in combination with ordinary best rule and weighted voting a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jorge, Alípio M., Azevedo, Paulo J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue
container_start_page 137
container_title
container_volume 3735
creator Jorge, Alípio M.
Azevedo, Paulo J.
description In this paper we study a new technique we call post-bagging, which consists in resampling parts of a classification model rather then the data. We do this with a particular kind of model: large sets of classification association rules, and in combination with ordinary best rule and weighted voting approaches. We empirically evaluate the effects of the technique in terms of classification accuracy. We also discuss the predictive power of different metrics used for association rule mining, such as confidence, lift, conviction and X². We conclude that, for the described experimental conditions, post-bagging improves classification results and that the best metric is conviction. Programa de Financiamento Plurianual de Unidades de I & D. Comunidade Europeia (CE). Fundo Europeu de Desenvolvimento Regional (FEDER). Fundação para a Ciência e a Tecnologia (FCT) - POSI/SRI/39630/2001/Class Project.
doi_str_mv 10.1007/11563983_13
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17413620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17413620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-840c0a37d5b2537125a103633c7fff5b3bac551fff9757d03bb9497fa415224f3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhs2XRCmd-AFkYWAI-Hx2HLNVFV9SJZYyW44bB0NwojgU-Pe4lIFb7nTPo5PuJeQM6BVQKq8BRIGqRA24R2ZKlig4RShUKfbJBAqAHJGrA3KyBUwxpMUhmVCkLFeS4zGZxfhKUyFIhmJCVvOQ1V99Pfj3OozZpx9fMhNjZ70ZfRey4aOtY2bCOrNt2nvn7S-4yfoujnllmsaHZid0YePtFp6SI2faWM_--pQ8392uFg_58un-cTFf5hYZG_OSU0sNyrWomEAJTBigWCBa6ZwTFVbGCgFpVlLINcWqUlxJZzgIxrjDKbnY3e1NtKZ1gwnWR92nZ8zwrUFywILR5F3uvJhQaOpBV133FjVQvY1V_4s1uec7d7DG9HqoNz6OJrklY5ozJfAHwkdu3A</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An experiment with association rules and classification: post-bagging and conviction</title><source>Springer Books</source><creator>Jorge, Alípio M. ; Azevedo, Paulo J.</creator><contributor>Hoffmann, Achim ; Motoda, Hiroshi ; Scheffer, Tobias</contributor><creatorcontrib>Jorge, Alípio M. ; Azevedo, Paulo J. ; Hoffmann, Achim ; Motoda, Hiroshi ; Scheffer, Tobias</creatorcontrib><description>In this paper we study a new technique we call post-bagging, which consists in resampling parts of a classification model rather then the data. We do this with a particular kind of model: large sets of classification association rules, and in combination with ordinary best rule and weighted voting approaches. We empirically evaluate the effects of the technique in terms of classification accuracy. We also discuss the predictive power of different metrics used for association rule mining, such as confidence, lift, conviction and X². We conclude that, for the described experimental conditions, post-bagging improves classification results and that the best metric is conviction. Programa de Financiamento Plurianual de Unidades de I &amp; D. Comunidade Europeia (CE). Fundo Europeu de Desenvolvimento Regional (FEDER). Fundação para a Ciência e a Tecnologia (FCT) - POSI/SRI/39630/2001/Class Project.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540292306</identifier><identifier>ISBN: 9783540292302</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540316985</identifier><identifier>EISBN: 3540316981</identifier><identifier>DOI: 10.1007/11563983_13</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Verlag</publisher><subject>Applied sciences ; Artificial intelligence ; Association Rule ; Association Rule Mining ; Association rules ; Classification ; Computer science; control theory; systems ; Decision Tree Inducer ; Exact sciences and technology ; Frequent Itemset ; Frequent Pattern Mining ; Science &amp; Technology</subject><ispartof>Discovery Science, 2005, Vol.3735, p.137-149</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-840c0a37d5b2537125a103633c7fff5b3bac551fff9757d03bb9497fa415224f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11563983_13$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11563983_13$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17413620$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Hoffmann, Achim</contributor><contributor>Motoda, Hiroshi</contributor><contributor>Scheffer, Tobias</contributor><creatorcontrib>Jorge, Alípio M.</creatorcontrib><creatorcontrib>Azevedo, Paulo J.</creatorcontrib><title>An experiment with association rules and classification: post-bagging and conviction</title><title>Discovery Science</title><description>In this paper we study a new technique we call post-bagging, which consists in resampling parts of a classification model rather then the data. We do this with a particular kind of model: large sets of classification association rules, and in combination with ordinary best rule and weighted voting approaches. We empirically evaluate the effects of the technique in terms of classification accuracy. We also discuss the predictive power of different metrics used for association rule mining, such as confidence, lift, conviction and X². We conclude that, for the described experimental conditions, post-bagging improves classification results and that the best metric is conviction. Programa de Financiamento Plurianual de Unidades de I &amp; D. Comunidade Europeia (CE). Fundo Europeu de Desenvolvimento Regional (FEDER). Fundação para a Ciência e a Tecnologia (FCT) - POSI/SRI/39630/2001/Class Project.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Association Rule</subject><subject>Association Rule Mining</subject><subject>Association rules</subject><subject>Classification</subject><subject>Computer science; control theory; systems</subject><subject>Decision Tree Inducer</subject><subject>Exact sciences and technology</subject><subject>Frequent Itemset</subject><subject>Frequent Pattern Mining</subject><subject>Science &amp; Technology</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540292306</isbn><isbn>9783540292302</isbn><isbn>9783540316985</isbn><isbn>3540316981</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAQhs2XRCmd-AFkYWAI-Hx2HLNVFV9SJZYyW44bB0NwojgU-Pe4lIFb7nTPo5PuJeQM6BVQKq8BRIGqRA24R2ZKlig4RShUKfbJBAqAHJGrA3KyBUwxpMUhmVCkLFeS4zGZxfhKUyFIhmJCVvOQ1V99Pfj3OozZpx9fMhNjZ70ZfRey4aOtY2bCOrNt2nvn7S-4yfoujnllmsaHZid0YePtFp6SI2faWM_--pQ8392uFg_58un-cTFf5hYZG_OSU0sNyrWomEAJTBigWCBa6ZwTFVbGCgFpVlLINcWqUlxJZzgIxrjDKbnY3e1NtKZ1gwnWR92nZ8zwrUFywILR5F3uvJhQaOpBV133FjVQvY1V_4s1uec7d7DG9HqoNz6OJrklY5ozJfAHwkdu3A</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Jorge, Alípio M.</creator><creator>Azevedo, Paulo J.</creator><general>Springer Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>RCLKO</scope><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>An experiment with association rules and classification: post-bagging and conviction</title><author>Jorge, Alípio M. ; Azevedo, Paulo J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-840c0a37d5b2537125a103633c7fff5b3bac551fff9757d03bb9497fa415224f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Association Rule</topic><topic>Association Rule Mining</topic><topic>Association rules</topic><topic>Classification</topic><topic>Computer science; control theory; systems</topic><topic>Decision Tree Inducer</topic><topic>Exact sciences and technology</topic><topic>Frequent Itemset</topic><topic>Frequent Pattern Mining</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jorge, Alípio M.</creatorcontrib><creatorcontrib>Azevedo, Paulo J.</creatorcontrib><collection>RCAAP open access repository</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jorge, Alípio M.</au><au>Azevedo, Paulo J.</au><au>Hoffmann, Achim</au><au>Motoda, Hiroshi</au><au>Scheffer, Tobias</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An experiment with association rules and classification: post-bagging and conviction</atitle><btitle>Discovery Science</btitle><date>2005</date><risdate>2005</risdate><volume>3735</volume><spage>137</spage><epage>149</epage><pages>137-149</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540292306</isbn><isbn>9783540292302</isbn><eisbn>9783540316985</eisbn><eisbn>3540316981</eisbn><abstract>In this paper we study a new technique we call post-bagging, which consists in resampling parts of a classification model rather then the data. We do this with a particular kind of model: large sets of classification association rules, and in combination with ordinary best rule and weighted voting approaches. We empirically evaluate the effects of the technique in terms of classification accuracy. We also discuss the predictive power of different metrics used for association rule mining, such as confidence, lift, conviction and X². We conclude that, for the described experimental conditions, post-bagging improves classification results and that the best metric is conviction. Programa de Financiamento Plurianual de Unidades de I &amp; D. Comunidade Europeia (CE). Fundo Europeu de Desenvolvimento Regional (FEDER). Fundação para a Ciência e a Tecnologia (FCT) - POSI/SRI/39630/2001/Class Project.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Verlag</pub><doi>10.1007/11563983_13</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Discovery Science, 2005, Vol.3735, p.137-149
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17413620
source Springer Books
subjects Applied sciences
Artificial intelligence
Association Rule
Association Rule Mining
Association rules
Classification
Computer science
control theory
systems
Decision Tree Inducer
Exact sciences and technology
Frequent Itemset
Frequent Pattern Mining
Science & Technology
title An experiment with association rules and classification: post-bagging and conviction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20experiment%20with%20association%20rules%20and%20classification:%20post-bagging%20and%20conviction&rft.btitle=Discovery%20Science&rft.au=Jorge,%20Al%C3%ADpio%20M.&rft.date=2005&rft.volume=3735&rft.spage=137&rft.epage=149&rft.pages=137-149&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540292306&rft.isbn_list=9783540292302&rft_id=info:doi/10.1007/11563983_13&rft_dat=%3Cpascalfrancis_sprin%3E17413620%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540316985&rft.eisbn_list=3540316981&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true