Monotone AC-Tree Automata
We consider several questions about monotone AC-tree automata, a class of equational tree automata whose transition rules correspond to rules in Kuroda normal form of context-sensitive grammars. Whereas it has been proved that this class has a decision procedure to determine if, given a monotone AC-...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider several questions about monotone AC-tree automata, a class of equational tree automata whose transition rules correspond to rules in Kuroda normal form of context-sensitive grammars. Whereas it has been proved that this class has a decision procedure to determine if, given a monotone AC-tree automaton, it accepts no terms, other important decidability or complexity results have not been well-investigated yet. In the paper, we prove that the membership problem for monotone AC-tree automata is PSPACE-complete. We then study the expressiveness of monotone AC-tree automata: precisely, we prove that the family of AC-regular tree languages is strictly subsumed in that of AC-monotone tree languages. The proof technique used in obtaining the above result yields the answers to two different questions, specifically that the family of monotone AC-tree languages is not closed under complementation, and that the inclusion problem for monotone AC-tree automata is undecidable. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11591191_24 |