Stimulus-Driven Unsupervised Synaptic Pruning in Large Neural Networks
We studied the emergence of cell assemblies out of locally connected random networks of integrate-and-fire units distributed on a 2D lattice stimulated with a spatiotemporal pattern in presence of independent random background noise. Networks were composed of 80% excitatory and 20% inhibitory units...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We studied the emergence of cell assemblies out of locally connected random networks of integrate-and-fire units distributed on a 2D lattice stimulated with a spatiotemporal pattern in presence of independent random background noise. Networks were composed of 80% excitatory and 20% inhibitory units with initially balanced synaptic weights. Excitatory–excitatory synapses were modified according to a spike-timing-dependent synaptic plasticity (stdp) rule associated with synaptic pruning. We show that the application, in presence of background noise, of a recurrent pattern of stimulation let appear cell assemblies characterized by an internal pattern of converging projections and a feed-forward topology not observed with an equivalent random stimulation. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11565123_6 |