An invariant variational principle for canonical flows on Lie groups

In this paper we examine the existence of Lie groups, whose canonical geodesic flows are variational with respect to a left-invariant regular—but not necessarily quadratic (i.e., metric)—Lagrange function. We give effective necessary and sufficient conditions for the existence of an invariant variat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2005-11, Vol.46 (11), p.112902-112902-11
1. Verfasser: Muzsnay, Zoltán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we examine the existence of Lie groups, whose canonical geodesic flows are variational with respect to a left-invariant regular—but not necessarily quadratic (i.e., metric)—Lagrange function. We give effective necessary and sufficient conditions for the existence of an invariant variational principle generating the canonical flow. With these results, taken in conjunction with the classification of Lie algebras, we solve the inverse problem of invariant Lagrangian dynamics in dimensions up to four.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.2118487