A Stigmergy Based Approach to Data Mining

In this paper, we report on the use of ant systems in the data mining field capable of extracting comprehensible classifiers from data. The ant system used is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: De Backer, Manu, Haesen, Raf, Martens, David, Baesens, Bart
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 978
container_issue
container_start_page 975
container_title
container_volume
creator De Backer, Manu
Haesen, Raf
Martens, David
Baesens, Bart
description In this paper, we report on the use of ant systems in the data mining field capable of extracting comprehensible classifiers from data. The ant system used is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal MAX}-{\mathcal MIN}$\end{document} ant system which differs from the originally proposed ant systems in its ability to explore bigger parts of the solution space, yielding better performing rules. Furthermore, we are able to include intervals in the rules resulting in less and shorter rules. Our experiments show a significant improvement of the performance both in accuracy and comprehensibility, compared to previous data mining techniques based on ant systems and other state-of-the-art classification techniques.
doi_str_mv 10.1007/11589990_123
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17345128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17345128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-c54ab245c97b6a5b3b2396033db8af08e3441ad877f2f2cd55ef8acf5ddf5b8a3</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhc1LIi1s_IAsDCAFfH3tOB7b8pSKGIA5unbsEGiTKM7Sf0-kdmA6RzqfzvAxdgX8DjjX9wCqMMbwEgQesRkqyRFyJfCYJZADZIjSnBwGLnMhTlkyNZEZLfGczWL84ZwLbUTCbhbpx9jUWz_Uu3RJ0Vfpou-Hjtx3OnbpA42UvjVt09YX7CzQJvrLQ87Z19Pj5-olW78_v64W68whhzFzSpIVUjmjbU7KohVoco5Y2YICLzxKCVQVWgcRhKuU8qEgF1RVBTUhOGfX-9-eoqNNGKh1TSz7odnSsCtBo1Qgiom73XNxmtraD6Xtut9YwiRm0lT-14R_dZFTkg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>A Stigmergy Based Approach to Data Mining</title><source>Springer Books</source><creator>De Backer, Manu ; Haesen, Raf ; Martens, David ; Baesens, Bart</creator><contributor>Jarvis, Ray ; Zhang, Shichao</contributor><creatorcontrib>De Backer, Manu ; Haesen, Raf ; Martens, David ; Baesens, Bart ; Jarvis, Ray ; Zhang, Shichao</creatorcontrib><description>In this paper, we report on the use of ant systems in the data mining field capable of extracting comprehensible classifiers from data. The ant system used is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal MAX}-{\mathcal MIN}$\end{document} ant system which differs from the originally proposed ant systems in its ability to explore bigger parts of the solution space, yielding better performing rules. Furthermore, we are able to include intervals in the rules resulting in less and shorter rules. Our experiments show a significant improvement of the performance both in accuracy and comprehensibility, compared to previous data mining techniques based on ant systems and other state-of-the-art classification techniques.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540304622</identifier><identifier>ISBN: 9783540304623</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540316523</identifier><identifier>EISBN: 9783540316527</identifier><identifier>DOI: 10.1007/11589990_123</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Memory organisation. Data processing ; Software</subject><ispartof>AI 2005: Advances in Artificial Intelligence, 2005, p.975-978</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-c54ab245c97b6a5b3b2396033db8af08e3441ad877f2f2cd55ef8acf5ddf5b8a3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11589990_123$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11589990_123$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17345128$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Jarvis, Ray</contributor><contributor>Zhang, Shichao</contributor><creatorcontrib>De Backer, Manu</creatorcontrib><creatorcontrib>Haesen, Raf</creatorcontrib><creatorcontrib>Martens, David</creatorcontrib><creatorcontrib>Baesens, Bart</creatorcontrib><title>A Stigmergy Based Approach to Data Mining</title><title>AI 2005: Advances in Artificial Intelligence</title><description>In this paper, we report on the use of ant systems in the data mining field capable of extracting comprehensible classifiers from data. The ant system used is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal MAX}-{\mathcal MIN}$\end{document} ant system which differs from the originally proposed ant systems in its ability to explore bigger parts of the solution space, yielding better performing rules. Furthermore, we are able to include intervals in the rules resulting in less and shorter rules. Our experiments show a significant improvement of the performance both in accuracy and comprehensibility, compared to previous data mining techniques based on ant systems and other state-of-the-art classification techniques.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540304622</isbn><isbn>9783540304623</isbn><isbn>3540316523</isbn><isbn>9783540316527</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkDtPwzAUhc1LIi1s_IAsDCAFfH3tOB7b8pSKGIA5unbsEGiTKM7Sf0-kdmA6RzqfzvAxdgX8DjjX9wCqMMbwEgQesRkqyRFyJfCYJZADZIjSnBwGLnMhTlkyNZEZLfGczWL84ZwLbUTCbhbpx9jUWz_Uu3RJ0Vfpou-Hjtx3OnbpA42UvjVt09YX7CzQJvrLQ87Z19Pj5-olW78_v64W68whhzFzSpIVUjmjbU7KohVoco5Y2YICLzxKCVQVWgcRhKuU8qEgF1RVBTUhOGfX-9-eoqNNGKh1TSz7odnSsCtBo1Qgiom73XNxmtraD6Xtut9YwiRm0lT-14R_dZFTkg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>De Backer, Manu</creator><creator>Haesen, Raf</creator><creator>Martens, David</creator><creator>Baesens, Bart</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>A Stigmergy Based Approach to Data Mining</title><author>De Backer, Manu ; Haesen, Raf ; Martens, David ; Baesens, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-c54ab245c97b6a5b3b2396033db8af08e3441ad877f2f2cd55ef8acf5ddf5b8a3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Backer, Manu</creatorcontrib><creatorcontrib>Haesen, Raf</creatorcontrib><creatorcontrib>Martens, David</creatorcontrib><creatorcontrib>Baesens, Bart</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Backer, Manu</au><au>Haesen, Raf</au><au>Martens, David</au><au>Baesens, Bart</au><au>Jarvis, Ray</au><au>Zhang, Shichao</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A Stigmergy Based Approach to Data Mining</atitle><btitle>AI 2005: Advances in Artificial Intelligence</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><spage>975</spage><epage>978</epage><pages>975-978</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540304622</isbn><isbn>9783540304623</isbn><eisbn>3540316523</eisbn><eisbn>9783540316527</eisbn><abstract>In this paper, we report on the use of ant systems in the data mining field capable of extracting comprehensible classifiers from data. The ant system used is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal MAX}-{\mathcal MIN}$\end{document} ant system which differs from the originally proposed ant systems in its ability to explore bigger parts of the solution space, yielding better performing rules. Furthermore, we are able to include intervals in the rules resulting in less and shorter rules. Our experiments show a significant improvement of the performance both in accuracy and comprehensibility, compared to previous data mining techniques based on ant systems and other state-of-the-art classification techniques.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11589990_123</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof AI 2005: Advances in Artificial Intelligence, 2005, p.975-978
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17345128
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Data processing. List processing. Character string processing
Exact sciences and technology
Memory organisation. Data processing
Software
title A Stigmergy Based Approach to Data Mining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20Stigmergy%20Based%20Approach%20to%20Data%20Mining&rft.btitle=AI%202005:%20Advances%20in%20Artificial%20Intelligence&rft.au=De%20Backer,%20Manu&rft.date=2005&rft.spage=975&rft.epage=978&rft.pages=975-978&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540304622&rft.isbn_list=9783540304623&rft_id=info:doi/10.1007/11589990_123&rft_dat=%3Cpascalfrancis_sprin%3E17345128%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540316523&rft.eisbn_list=9783540316527&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true