A Stigmergy Based Approach to Data Mining
In this paper, we report on the use of ant systems in the data mining field capable of extracting comprehensible classifiers from data. The ant system used is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \use...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we report on the use of ant systems in the data mining field capable of extracting comprehensible classifiers from data. The ant system used is a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal MAX}-{\mathcal MIN}$\end{document} ant system which differs from the originally proposed ant systems in its ability to explore bigger parts of the solution space, yielding better performing rules. Furthermore, we are able to include intervals in the rules resulting in less and shorter rules. Our experiments show a significant improvement of the performance both in accuracy and comprehensibility, compared to previous data mining techniques based on ant systems and other state-of-the-art classification techniques. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11589990_123 |