A Stigmergy Based Approach to Data Mining

In this paper, we report on the use of ant systems in the data mining field capable of extracting comprehensible classifiers from data. The ant system used is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: De Backer, Manu, Haesen, Raf, Martens, David, Baesens, Bart
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we report on the use of ant systems in the data mining field capable of extracting comprehensible classifiers from data. The ant system used is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal MAX}-{\mathcal MIN}$\end{document} ant system which differs from the originally proposed ant systems in its ability to explore bigger parts of the solution space, yielding better performing rules. Furthermore, we are able to include intervals in the rules resulting in less and shorter rules. Our experiments show a significant improvement of the performance both in accuracy and comprehensibility, compared to previous data mining techniques based on ant systems and other state-of-the-art classification techniques.
ISSN:0302-9743
1611-3349
DOI:10.1007/11589990_123