Machine Learning for Time Interval Petri Nets

Creating Petri Net domain models faces the same challenges that confront all knowledge-intensive AI performance systems: model specification, knowledge acquisition, and refinement. Thus, a fundamental question to investigate is the degree to which automation can be used. This paper formulates the le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bulitko, Vadim, Wilkins, David C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Creating Petri Net domain models faces the same challenges that confront all knowledge-intensive AI performance systems: model specification, knowledge acquisition, and refinement. Thus, a fundamental question to investigate is the degree to which automation can be used. This paper formulates the learning task and presents the first machine learning method for Time Interval Petri Net (TIPN) domain models. In a preliminary evaluation within a damage control domain, the method learned a nearly perfect model of fire spread augmented with temporal and spatial data.
ISSN:0302-9743
1611-3349
DOI:10.1007/11589990_120